metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4○D20⋊10C4, C4.63(C2×D20), C4⋊C4.235D10, D20.40(C2×C4), (C2×C4).146D20, C20.143(C2×D4), (C2×C20).496D4, C42⋊C2⋊2D5, D20⋊6C4⋊43C2, C10.85(C4○D8), C10.Q16⋊43C2, (C22×C10).75D4, (C2×C20).329C23, C20.124(C22×C4), Dic10.41(C2×C4), (C22×C4).339D10, C23.38(C5⋊D4), C5⋊4(C23.24D4), C4.52(D10⋊C4), C20.111(C22⋊C4), C2.2(D4.8D10), (C2×D20).243C22, C22.1(D10⋊C4), (C22×C20).151C22, (C2×Dic10).270C22, C4.52(C2×C4×D5), (C2×C4).81(C4×D5), (C22×C5⋊2C8)⋊2C2, (C2×C4○D20).7C2, (C2×C20).265(C2×C4), (C5×C42⋊C2)⋊2C2, (C2×C10).458(C2×D4), C10.86(C2×C22⋊C4), C22.73(C2×C5⋊D4), C2.18(C2×D10⋊C4), (C2×C4).274(C5⋊D4), (C5×C4⋊C4).266C22, (C2×C4).429(C22×D5), (C2×C10).79(C22⋊C4), (C2×C5⋊2C8).251C22, SmallGroup(320,629)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4○D20⋊10C4
G = < a,b,c,d | a4=c2=d4=1, b10=a2, ab=ba, ac=ca, ad=da, cbc=a2b9, dbd-1=a2b, dcd-1=a2b5c >
Subgroups: 590 in 158 conjugacy classes, 63 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, C20, D10, C2×C10, C2×C10, C2×C10, D4⋊C4, Q8⋊C4, C42⋊C2, C22×C8, C2×C4○D4, C5⋊2C8, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C22×D5, C22×C10, C23.24D4, C2×C5⋊2C8, C2×C5⋊2C8, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C4○D20, C2×C5⋊D4, C22×C20, D20⋊6C4, C10.Q16, C22×C5⋊2C8, C5×C42⋊C2, C2×C4○D20, C4○D20⋊10C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C2×C22⋊C4, C4○D8, C4×D5, D20, C5⋊D4, C22×D5, C23.24D4, D10⋊C4, C2×C4×D5, C2×D20, C2×C5⋊D4, C2×D10⋊C4, D4.8D10, C4○D20⋊10C4
(1 94 11 84)(2 95 12 85)(3 96 13 86)(4 97 14 87)(5 98 15 88)(6 99 16 89)(7 100 17 90)(8 81 18 91)(9 82 19 92)(10 83 20 93)(21 102 31 112)(22 103 32 113)(23 104 33 114)(24 105 34 115)(25 106 35 116)(26 107 36 117)(27 108 37 118)(28 109 38 119)(29 110 39 120)(30 111 40 101)(41 122 51 132)(42 123 52 133)(43 124 53 134)(44 125 54 135)(45 126 55 136)(46 127 56 137)(47 128 57 138)(48 129 58 139)(49 130 59 140)(50 131 60 121)(61 154 71 144)(62 155 72 145)(63 156 73 146)(64 157 74 147)(65 158 75 148)(66 159 76 149)(67 160 77 150)(68 141 78 151)(69 142 79 152)(70 143 80 153)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 24)(22 23)(25 40)(26 39)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(41 47)(42 46)(43 45)(48 60)(49 59)(50 58)(51 57)(52 56)(53 55)(61 73)(62 72)(63 71)(64 70)(65 69)(66 68)(74 80)(75 79)(76 78)(81 86)(82 85)(83 84)(87 100)(88 99)(89 98)(90 97)(91 96)(92 95)(93 94)(101 106)(102 105)(103 104)(107 120)(108 119)(109 118)(110 117)(111 116)(112 115)(113 114)(121 129)(122 128)(123 127)(124 126)(130 140)(131 139)(132 138)(133 137)(134 136)(141 159)(142 158)(143 157)(144 156)(145 155)(146 154)(147 153)(148 152)(149 151)
(1 75 33 52)(2 66 34 43)(3 77 35 54)(4 68 36 45)(5 79 37 56)(6 70 38 47)(7 61 39 58)(8 72 40 49)(9 63 21 60)(10 74 22 51)(11 65 23 42)(12 76 24 53)(13 67 25 44)(14 78 26 55)(15 69 27 46)(16 80 28 57)(17 71 29 48)(18 62 30 59)(19 73 31 50)(20 64 32 41)(81 145 101 130)(82 156 102 121)(83 147 103 132)(84 158 104 123)(85 149 105 134)(86 160 106 125)(87 151 107 136)(88 142 108 127)(89 153 109 138)(90 144 110 129)(91 155 111 140)(92 146 112 131)(93 157 113 122)(94 148 114 133)(95 159 115 124)(96 150 116 135)(97 141 117 126)(98 152 118 137)(99 143 119 128)(100 154 120 139)
G:=sub<Sym(160)| (1,94,11,84)(2,95,12,85)(3,96,13,86)(4,97,14,87)(5,98,15,88)(6,99,16,89)(7,100,17,90)(8,81,18,91)(9,82,19,92)(10,83,20,93)(21,102,31,112)(22,103,32,113)(23,104,33,114)(24,105,34,115)(25,106,35,116)(26,107,36,117)(27,108,37,118)(28,109,38,119)(29,110,39,120)(30,111,40,101)(41,122,51,132)(42,123,52,133)(43,124,53,134)(44,125,54,135)(45,126,55,136)(46,127,56,137)(47,128,57,138)(48,129,58,139)(49,130,59,140)(50,131,60,121)(61,154,71,144)(62,155,72,145)(63,156,73,146)(64,157,74,147)(65,158,75,148)(66,159,76,149)(67,160,77,150)(68,141,78,151)(69,142,79,152)(70,143,80,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,24)(22,23)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78)(81,86)(82,85)(83,84)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94)(101,106)(102,105)(103,104)(107,120)(108,119)(109,118)(110,117)(111,116)(112,115)(113,114)(121,129)(122,128)(123,127)(124,126)(130,140)(131,139)(132,138)(133,137)(134,136)(141,159)(142,158)(143,157)(144,156)(145,155)(146,154)(147,153)(148,152)(149,151), (1,75,33,52)(2,66,34,43)(3,77,35,54)(4,68,36,45)(5,79,37,56)(6,70,38,47)(7,61,39,58)(8,72,40,49)(9,63,21,60)(10,74,22,51)(11,65,23,42)(12,76,24,53)(13,67,25,44)(14,78,26,55)(15,69,27,46)(16,80,28,57)(17,71,29,48)(18,62,30,59)(19,73,31,50)(20,64,32,41)(81,145,101,130)(82,156,102,121)(83,147,103,132)(84,158,104,123)(85,149,105,134)(86,160,106,125)(87,151,107,136)(88,142,108,127)(89,153,109,138)(90,144,110,129)(91,155,111,140)(92,146,112,131)(93,157,113,122)(94,148,114,133)(95,159,115,124)(96,150,116,135)(97,141,117,126)(98,152,118,137)(99,143,119,128)(100,154,120,139)>;
G:=Group( (1,94,11,84)(2,95,12,85)(3,96,13,86)(4,97,14,87)(5,98,15,88)(6,99,16,89)(7,100,17,90)(8,81,18,91)(9,82,19,92)(10,83,20,93)(21,102,31,112)(22,103,32,113)(23,104,33,114)(24,105,34,115)(25,106,35,116)(26,107,36,117)(27,108,37,118)(28,109,38,119)(29,110,39,120)(30,111,40,101)(41,122,51,132)(42,123,52,133)(43,124,53,134)(44,125,54,135)(45,126,55,136)(46,127,56,137)(47,128,57,138)(48,129,58,139)(49,130,59,140)(50,131,60,121)(61,154,71,144)(62,155,72,145)(63,156,73,146)(64,157,74,147)(65,158,75,148)(66,159,76,149)(67,160,77,150)(68,141,78,151)(69,142,79,152)(70,143,80,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,24)(22,23)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78)(81,86)(82,85)(83,84)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94)(101,106)(102,105)(103,104)(107,120)(108,119)(109,118)(110,117)(111,116)(112,115)(113,114)(121,129)(122,128)(123,127)(124,126)(130,140)(131,139)(132,138)(133,137)(134,136)(141,159)(142,158)(143,157)(144,156)(145,155)(146,154)(147,153)(148,152)(149,151), (1,75,33,52)(2,66,34,43)(3,77,35,54)(4,68,36,45)(5,79,37,56)(6,70,38,47)(7,61,39,58)(8,72,40,49)(9,63,21,60)(10,74,22,51)(11,65,23,42)(12,76,24,53)(13,67,25,44)(14,78,26,55)(15,69,27,46)(16,80,28,57)(17,71,29,48)(18,62,30,59)(19,73,31,50)(20,64,32,41)(81,145,101,130)(82,156,102,121)(83,147,103,132)(84,158,104,123)(85,149,105,134)(86,160,106,125)(87,151,107,136)(88,142,108,127)(89,153,109,138)(90,144,110,129)(91,155,111,140)(92,146,112,131)(93,157,113,122)(94,148,114,133)(95,159,115,124)(96,150,116,135)(97,141,117,126)(98,152,118,137)(99,143,119,128)(100,154,120,139) );
G=PermutationGroup([[(1,94,11,84),(2,95,12,85),(3,96,13,86),(4,97,14,87),(5,98,15,88),(6,99,16,89),(7,100,17,90),(8,81,18,91),(9,82,19,92),(10,83,20,93),(21,102,31,112),(22,103,32,113),(23,104,33,114),(24,105,34,115),(25,106,35,116),(26,107,36,117),(27,108,37,118),(28,109,38,119),(29,110,39,120),(30,111,40,101),(41,122,51,132),(42,123,52,133),(43,124,53,134),(44,125,54,135),(45,126,55,136),(46,127,56,137),(47,128,57,138),(48,129,58,139),(49,130,59,140),(50,131,60,121),(61,154,71,144),(62,155,72,145),(63,156,73,146),(64,157,74,147),(65,158,75,148),(66,159,76,149),(67,160,77,150),(68,141,78,151),(69,142,79,152),(70,143,80,153)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,24),(22,23),(25,40),(26,39),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(41,47),(42,46),(43,45),(48,60),(49,59),(50,58),(51,57),(52,56),(53,55),(61,73),(62,72),(63,71),(64,70),(65,69),(66,68),(74,80),(75,79),(76,78),(81,86),(82,85),(83,84),(87,100),(88,99),(89,98),(90,97),(91,96),(92,95),(93,94),(101,106),(102,105),(103,104),(107,120),(108,119),(109,118),(110,117),(111,116),(112,115),(113,114),(121,129),(122,128),(123,127),(124,126),(130,140),(131,139),(132,138),(133,137),(134,136),(141,159),(142,158),(143,157),(144,156),(145,155),(146,154),(147,153),(148,152),(149,151)], [(1,75,33,52),(2,66,34,43),(3,77,35,54),(4,68,36,45),(5,79,37,56),(6,70,38,47),(7,61,39,58),(8,72,40,49),(9,63,21,60),(10,74,22,51),(11,65,23,42),(12,76,24,53),(13,67,25,44),(14,78,26,55),(15,69,27,46),(16,80,28,57),(17,71,29,48),(18,62,30,59),(19,73,31,50),(20,64,32,41),(81,145,101,130),(82,156,102,121),(83,147,103,132),(84,158,104,123),(85,149,105,134),(86,160,106,125),(87,151,107,136),(88,142,108,127),(89,153,109,138),(90,144,110,129),(91,155,111,140),(92,146,112,131),(93,157,113,122),(94,148,114,133),(95,159,115,124),(96,150,116,135),(97,141,117,126),(98,152,118,137),(99,143,119,128),(100,154,120,139)]])
68 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5A | 5B | 8A | ··· | 8H | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20AB |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 20 | 20 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 20 | 20 | 2 | 2 | 10 | ··· | 10 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
68 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D5 | D10 | D10 | C4○D8 | C4×D5 | D20 | C5⋊D4 | C5⋊D4 | D4.8D10 |
| kernel | C4○D20⋊10C4 | D20⋊6C4 | C10.Q16 | C22×C5⋊2C8 | C5×C42⋊C2 | C2×C4○D20 | C4○D20 | C2×C20 | C22×C10 | C42⋊C2 | C4⋊C4 | C22×C4 | C10 | C2×C4 | C2×C4 | C2×C4 | C23 | C2 |
| # reps | 1 | 2 | 2 | 1 | 1 | 1 | 8 | 3 | 1 | 2 | 4 | 2 | 8 | 8 | 8 | 4 | 4 | 8 |
Matrix representation of C4○D20⋊10C4 ►in GL4(𝔽41) generated by
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 32 | 0 |
| 0 | 0 | 0 | 32 |
| 35 | 40 | 0 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 0 | 40 | 18 |
| 0 | 0 | 9 | 1 |
| 40 | 35 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 40 | 18 |
| 0 | 0 | 0 | 1 |
| 39 | 13 | 0 | 0 |
| 28 | 2 | 0 | 0 |
| 0 | 0 | 0 | 30 |
| 0 | 0 | 26 | 0 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,32,0,0,0,0,32],[35,1,0,0,40,0,0,0,0,0,40,9,0,0,18,1],[40,0,0,0,35,1,0,0,0,0,40,0,0,0,18,1],[39,28,0,0,13,2,0,0,0,0,0,26,0,0,30,0] >;
C4○D20⋊10C4 in GAP, Magma, Sage, TeX
C_4\circ D_{20}\rtimes_{10}C_4 % in TeX
G:=Group("C4oD20:10C4"); // GroupNames label
G:=SmallGroup(320,629);
// by ID
G=gap.SmallGroup(320,629);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,422,58,1684,438,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^2=d^4=1,b^10=a^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=a^2*b^9,d*b*d^-1=a^2*b,d*c*d^-1=a^2*b^5*c>;
// generators/relations