Copied to
clipboard

G = C5xD8:2C4order 320 = 26·5

Direct product of C5 and D8:2C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C5xD8:2C4, D8:2C20, Q16:2C20, C40.102D4, M5(2):5C10, C20.43SD16, (C5xD8):14C4, C8.1(C2xC20), C4.Q8:1C10, C8.22(C5xD4), C40.83(C2xC4), (C5xQ16):14C4, C4oD8.2C10, (C2xC10).25D8, C4.8(C5xSD16), C22.3(C5xD8), (C2xC20).279D4, (C5xM5(2)):13C2, (C2xC40).265C22, C10.55(D4:C4), C20.119(C22:C4), (C5xC4oD8).7C2, (C5xC4.Q8):10C2, (C2xC4).10(C5xD4), C4.4(C5xC22:C4), (C2xC8).12(C2xC10), C2.9(C5xD4:C4), SmallGroup(320,165)

Series: Derived Chief Lower central Upper central

C1C8 — C5xD8:2C4
C1C2C4C2xC4C2xC8C2xC40C5xC4.Q8 — C5xD8:2C4
C1C2C4C8 — C5xD8:2C4
C1C10C2xC20C2xC40 — C5xD8:2C4

Generators and relations for C5xD8:2C4
 G = < a,b,c,d | a5=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=b5c >

Subgroups: 130 in 58 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2xC4, C2xC4, D4, Q8, C10, C10, C16, C4:C4, C2xC8, D8, SD16, Q16, C4oD4, C20, C20, C2xC10, C2xC10, C4.Q8, M5(2), C4oD8, C40, C2xC20, C2xC20, C5xD4, C5xQ8, D8:2C4, C80, C5xC4:C4, C2xC40, C5xD8, C5xSD16, C5xQ16, C5xC4oD4, C5xC4.Q8, C5xM5(2), C5xC4oD8, C5xD8:2C4
Quotients: C1, C2, C4, C22, C5, C2xC4, D4, C10, C22:C4, D8, SD16, C20, C2xC10, D4:C4, C2xC20, C5xD4, D8:2C4, C5xC22:C4, C5xD8, C5xSD16, C5xD4:C4, C5xD8:2C4

Smallest permutation representation of C5xD8:2C4
On 80 points
Generators in S80
(1 39 31 23 15)(2 40 32 24 16)(3 33 25 17 9)(4 34 26 18 10)(5 35 27 19 11)(6 36 28 20 12)(7 37 29 21 13)(8 38 30 22 14)(41 73 65 57 49)(42 74 66 58 50)(43 75 67 59 51)(44 76 68 60 52)(45 77 69 61 53)(46 78 70 62 54)(47 79 71 63 55)(48 80 72 64 56)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 48)(2 47)(3 46)(4 45)(5 44)(6 43)(7 42)(8 41)(9 54)(10 53)(11 52)(12 51)(13 50)(14 49)(15 56)(16 55)(17 62)(18 61)(19 60)(20 59)(21 58)(22 57)(23 64)(24 63)(25 70)(26 69)(27 68)(28 67)(29 66)(30 65)(31 72)(32 71)(33 78)(34 77)(35 76)(36 75)(37 74)(38 73)(39 80)(40 79)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 21)(18 24)(20 22)(25 29)(26 32)(28 30)(33 37)(34 40)(36 38)(41 42 45 46)(43 48 47 44)(49 50 53 54)(51 56 55 52)(57 58 61 62)(59 64 63 60)(65 66 69 70)(67 72 71 68)(73 74 77 78)(75 80 79 76)

G:=sub<Sym(80)| (1,39,31,23,15)(2,40,32,24,16)(3,33,25,17,9)(4,34,26,18,10)(5,35,27,19,11)(6,36,28,20,12)(7,37,29,21,13)(8,38,30,22,14)(41,73,65,57,49)(42,74,66,58,50)(43,75,67,59,51)(44,76,68,60,52)(45,77,69,61,53)(46,78,70,62,54)(47,79,71,63,55)(48,80,72,64,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,56)(16,55)(17,62)(18,61)(19,60)(20,59)(21,58)(22,57)(23,64)(24,63)(25,70)(26,69)(27,68)(28,67)(29,66)(30,65)(31,72)(32,71)(33,78)(34,77)(35,76)(36,75)(37,74)(38,73)(39,80)(40,79), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,21)(18,24)(20,22)(25,29)(26,32)(28,30)(33,37)(34,40)(36,38)(41,42,45,46)(43,48,47,44)(49,50,53,54)(51,56,55,52)(57,58,61,62)(59,64,63,60)(65,66,69,70)(67,72,71,68)(73,74,77,78)(75,80,79,76)>;

G:=Group( (1,39,31,23,15)(2,40,32,24,16)(3,33,25,17,9)(4,34,26,18,10)(5,35,27,19,11)(6,36,28,20,12)(7,37,29,21,13)(8,38,30,22,14)(41,73,65,57,49)(42,74,66,58,50)(43,75,67,59,51)(44,76,68,60,52)(45,77,69,61,53)(46,78,70,62,54)(47,79,71,63,55)(48,80,72,64,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,48)(2,47)(3,46)(4,45)(5,44)(6,43)(7,42)(8,41)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,56)(16,55)(17,62)(18,61)(19,60)(20,59)(21,58)(22,57)(23,64)(24,63)(25,70)(26,69)(27,68)(28,67)(29,66)(30,65)(31,72)(32,71)(33,78)(34,77)(35,76)(36,75)(37,74)(38,73)(39,80)(40,79), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,21)(18,24)(20,22)(25,29)(26,32)(28,30)(33,37)(34,40)(36,38)(41,42,45,46)(43,48,47,44)(49,50,53,54)(51,56,55,52)(57,58,61,62)(59,64,63,60)(65,66,69,70)(67,72,71,68)(73,74,77,78)(75,80,79,76) );

G=PermutationGroup([[(1,39,31,23,15),(2,40,32,24,16),(3,33,25,17,9),(4,34,26,18,10),(5,35,27,19,11),(6,36,28,20,12),(7,37,29,21,13),(8,38,30,22,14),(41,73,65,57,49),(42,74,66,58,50),(43,75,67,59,51),(44,76,68,60,52),(45,77,69,61,53),(46,78,70,62,54),(47,79,71,63,55),(48,80,72,64,56)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,48),(2,47),(3,46),(4,45),(5,44),(6,43),(7,42),(8,41),(9,54),(10,53),(11,52),(12,51),(13,50),(14,49),(15,56),(16,55),(17,62),(18,61),(19,60),(20,59),(21,58),(22,57),(23,64),(24,63),(25,70),(26,69),(27,68),(28,67),(29,66),(30,65),(31,72),(32,71),(33,78),(34,77),(35,76),(36,75),(37,74),(38,73),(39,80),(40,79)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,21),(18,24),(20,22),(25,29),(26,32),(28,30),(33,37),(34,40),(36,38),(41,42,45,46),(43,48,47,44),(49,50,53,54),(51,56,55,52),(57,58,61,62),(59,64,63,60),(65,66,69,70),(67,72,71,68),(73,74,77,78),(75,80,79,76)]])

80 conjugacy classes

class 1 2A2B2C4A4B4C4D4E5A5B5C5D8A8B8C10A10B10C10D10E10F10G10H10I10J10K10L16A16B16C16D20A···20H20I···20T40A···40H40I40J40K40L80A···80P
order12224444455558881010101010101010101010101616161620···2020···2040···404040404080···80
size112822888111122411112222888844442···28···82···244444···4

80 irreducible representations

dim1111111111112222222244
type+++++++
imageC1C2C2C2C4C4C5C10C10C10C20C20D4D4SD16D8C5xD4C5xD4C5xSD16C5xD8D8:2C4C5xD8:2C4
kernelC5xD8:2C4C5xC4.Q8C5xM5(2)C5xC4oD8C5xD8C5xQ16D8:2C4C4.Q8M5(2)C4oD8D8Q16C40C2xC20C20C2xC10C8C2xC4C4C22C5C1
# reps1111224444881122448828

Matrix representation of C5xD8:2C4 in GL4(F241) generated by

87000
08700
00870
00087
,
0194332
2033816611
00222222
0019222
,
6411158121
0019222
203016611
2033816611
,
24001175
239119964
00222222
0022219
G:=sub<GL(4,GF(241))| [87,0,0,0,0,87,0,0,0,0,87,0,0,0,0,87],[0,203,0,0,19,38,0,0,43,166,222,19,32,11,222,222],[64,0,203,203,11,0,0,38,158,19,166,166,121,222,11,11],[240,239,0,0,0,1,0,0,11,199,222,222,75,64,222,19] >;

C5xD8:2C4 in GAP, Magma, Sage, TeX

C_5\times D_8\rtimes_2C_4
% in TeX

G:=Group("C5xD8:2C4");
// GroupNames label

G:=SmallGroup(320,165);
// by ID

G=gap.SmallGroup(320,165);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,2803,3650,136,3511,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=b^5*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<