Extensions 1→N→G→Q→1 with N=C5×M5(2) and Q=C2

Direct product G=N×Q with N=C5×M5(2) and Q=C2
dρLabelID
C10×M5(2)160C10xM5(2)320,1004

Semidirect products G=N:Q with N=C5×M5(2) and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×M5(2))⋊1C2 = D80⋊C2φ: C2/C1C2 ⊆ Out C5×M5(2)804+(C5xM5(2)):1C2320,535
(C5×M5(2))⋊2C2 = C16.D10φ: C2/C1C2 ⊆ Out C5×M5(2)1604-(C5xM5(2)):2C2320,536
(C5×M5(2))⋊3C2 = C5×C16⋊C22φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)):3C2320,1010
(C5×M5(2))⋊4C2 = C5×Q32⋊C2φ: C2/C1C2 ⊆ Out C5×M5(2)1604(C5xM5(2)):4C2320,1011
(C5×M5(2))⋊5C2 = D5×M5(2)φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)):5C2320,533
(C5×M5(2))⋊6C2 = D20.5C8φ: C2/C1C2 ⊆ Out C5×M5(2)1604(C5xM5(2)):6C2320,534
(C5×M5(2))⋊7C2 = C8.25D20φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)):7C2320,72
(C5×M5(2))⋊8C2 = D20.4C8φ: C2/C1C2 ⊆ Out C5×M5(2)1604(C5xM5(2)):8C2320,73
(C5×M5(2))⋊9C2 = D40.4C4φ: C2/C1C2 ⊆ Out C5×M5(2)804+(C5xM5(2)):9C2320,74
(C5×M5(2))⋊10C2 = D408C4φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)):10C2320,76
(C5×M5(2))⋊11C2 = C5×C23.C8φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)):11C2320,154
(C5×M5(2))⋊12C2 = C5×D4.C8φ: C2/C1C2 ⊆ Out C5×M5(2)1602(C5xM5(2)):12C2320,155
(C5×M5(2))⋊13C2 = C5×D82C4φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)):13C2320,165
(C5×M5(2))⋊14C2 = C5×M5(2)⋊C2φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)):14C2320,166
(C5×M5(2))⋊15C2 = C5×D4○C16φ: trivial image1602(C5xM5(2)):15C2320,1005

Non-split extensions G=N.Q with N=C5×M5(2) and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×M5(2)).1C2 = C40.Q8φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)).1C2320,71
(C5×M5(2)).2C2 = C80⋊C4φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)).2C2320,70
(C5×M5(2)).3C2 = C5×C8.Q8φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)).3C2320,170
(C5×M5(2)).4C2 = C40.9Q8φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)).4C2320,69
(C5×M5(2)).5C2 = C20.4D8φ: C2/C1C2 ⊆ Out C5×M5(2)1604-(C5xM5(2)).5C2320,75
(C5×M5(2)).6C2 = C5×C16⋊C4φ: C2/C1C2 ⊆ Out C5×M5(2)804(C5xM5(2)).6C2320,152
(C5×M5(2)).7C2 = C5×C8.17D4φ: C2/C1C2 ⊆ Out C5×M5(2)1604(C5xM5(2)).7C2320,167
(C5×M5(2)).8C2 = C5×C8.C8φ: C2/C1C2 ⊆ Out C5×M5(2)802(C5xM5(2)).8C2320,169

׿
×
𝔽