Copied to
clipboard

G = C8.25D20order 320 = 26·5

11st non-split extension by C8 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.25D20, C40.46D4, M5(2):3D5, C20.20M4(2), C5:3(C23.C8), C22.5(C8xD5), (C2xC8).152D10, C8.46(C5:D4), (C5xM5(2)):7C2, (C2xDic5).1C8, C20.4C8:10C2, (C22xD5).1C8, C4.10(C8:D5), C10.24(C22:C8), (C2xC40).220C22, C2.10(D10:1C8), C4.42(D10:C4), C20.104(C22:C4), (C2xC4xD5).1C4, (C2xC5:2C8).2C4, (C2xC10).18(C2xC8), (C2xC4).137(C4xD5), (C2xC20).225(C2xC4), (C2xC8:D5).14C2, SmallGroup(320,72)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C8.25D20
C1C5C10C20C40C2xC40C2xC8:D5 — C8.25D20
C5C10C2xC10 — C8.25D20
C1C4C2xC8M5(2)

Generators and relations for C8.25D20
 G = < a,b,c,d | a16=b2=c5=d2=1, bab=a9, ac=ca, dad=ab, bc=cb, bd=db, dcd=c-1 >

Subgroups: 214 in 58 conjugacy classes, 27 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2xC4, C2xC4, C23, D5, C10, C10, C16, C2xC8, C2xC8, M4(2), C22xC4, Dic5, C20, D10, C2xC10, M5(2), M5(2), C2xM4(2), C5:2C8, C40, C4xD5, C2xDic5, C2xC20, C22xD5, C23.C8, C5:2C16, C80, C8:D5, C2xC5:2C8, C2xC40, C2xC4xD5, C20.4C8, C5xM5(2), C2xC8:D5, C8.25D20
Quotients: C1, C2, C4, C22, C8, C2xC4, D4, D5, C22:C4, C2xC8, M4(2), D10, C22:C8, C4xD5, D20, C5:D4, C23.C8, C8xD5, C8:D5, D10:C4, D10:1C8, C8.25D20

Smallest permutation representation of C8.25D20
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 10)(4 12)(6 14)(8 16)(18 26)(20 28)(22 30)(24 32)(33 41)(35 43)(37 45)(39 47)(49 57)(51 59)(53 61)(55 63)(65 73)(67 75)(69 77)(71 79)
(1 23 36 78 62)(2 24 37 79 63)(3 25 38 80 64)(4 26 39 65 49)(5 27 40 66 50)(6 28 41 67 51)(7 29 42 68 52)(8 30 43 69 53)(9 31 44 70 54)(10 32 45 71 55)(11 17 46 72 56)(12 18 47 73 57)(13 19 48 74 58)(14 20 33 75 59)(15 21 34 76 60)(16 22 35 77 61)
(1 62)(2 55)(3 56)(4 49)(5 50)(6 59)(7 60)(8 53)(9 54)(10 63)(11 64)(12 57)(13 58)(14 51)(15 52)(16 61)(17 80)(18 73)(19 74)(20 67)(21 68)(22 77)(23 78)(24 71)(25 72)(26 65)(27 66)(28 75)(29 76)(30 69)(31 70)(32 79)(33 41)(34 42)(37 45)(38 46)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63)(65,73)(67,75)(69,77)(71,79), (1,23,36,78,62)(2,24,37,79,63)(3,25,38,80,64)(4,26,39,65,49)(5,27,40,66,50)(6,28,41,67,51)(7,29,42,68,52)(8,30,43,69,53)(9,31,44,70,54)(10,32,45,71,55)(11,17,46,72,56)(12,18,47,73,57)(13,19,48,74,58)(14,20,33,75,59)(15,21,34,76,60)(16,22,35,77,61), (1,62)(2,55)(3,56)(4,49)(5,50)(6,59)(7,60)(8,53)(9,54)(10,63)(11,64)(12,57)(13,58)(14,51)(15,52)(16,61)(17,80)(18,73)(19,74)(20,67)(21,68)(22,77)(23,78)(24,71)(25,72)(26,65)(27,66)(28,75)(29,76)(30,69)(31,70)(32,79)(33,41)(34,42)(37,45)(38,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(33,41)(35,43)(37,45)(39,47)(49,57)(51,59)(53,61)(55,63)(65,73)(67,75)(69,77)(71,79), (1,23,36,78,62)(2,24,37,79,63)(3,25,38,80,64)(4,26,39,65,49)(5,27,40,66,50)(6,28,41,67,51)(7,29,42,68,52)(8,30,43,69,53)(9,31,44,70,54)(10,32,45,71,55)(11,17,46,72,56)(12,18,47,73,57)(13,19,48,74,58)(14,20,33,75,59)(15,21,34,76,60)(16,22,35,77,61), (1,62)(2,55)(3,56)(4,49)(5,50)(6,59)(7,60)(8,53)(9,54)(10,63)(11,64)(12,57)(13,58)(14,51)(15,52)(16,61)(17,80)(18,73)(19,74)(20,67)(21,68)(22,77)(23,78)(24,71)(25,72)(26,65)(27,66)(28,75)(29,76)(30,69)(31,70)(32,79)(33,41)(34,42)(37,45)(38,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,10),(4,12),(6,14),(8,16),(18,26),(20,28),(22,30),(24,32),(33,41),(35,43),(37,45),(39,47),(49,57),(51,59),(53,61),(55,63),(65,73),(67,75),(69,77),(71,79)], [(1,23,36,78,62),(2,24,37,79,63),(3,25,38,80,64),(4,26,39,65,49),(5,27,40,66,50),(6,28,41,67,51),(7,29,42,68,52),(8,30,43,69,53),(9,31,44,70,54),(10,32,45,71,55),(11,17,46,72,56),(12,18,47,73,57),(13,19,48,74,58),(14,20,33,75,59),(15,21,34,76,60),(16,22,35,77,61)], [(1,62),(2,55),(3,56),(4,49),(5,50),(6,59),(7,60),(8,53),(9,54),(10,63),(11,64),(12,57),(13,58),(14,51),(15,52),(16,61),(17,80),(18,73),(19,74),(20,67),(21,68),(22,77),(23,78),(24,71),(25,72),(26,65),(27,66),(28,75),(29,76),(30,69),(31,70),(32,79),(33,41),(34,42),(37,45),(38,46)]])

62 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B8A8B8C8D8E8F10A10B10C10D16A16B16C16D16E16F16G16H20A20B20C20D20E20F40A···40H40I40J40K40L80A···80P
order122244445588888810101010161616161616161620202020202040···404040404080···80
size1122011220222222202022444444202020202222442···244444···4

62 irreducible representations

dim1111111122222222244
type++++++++
imageC1C2C2C2C4C4C8C8D4D5M4(2)D10D20C5:D4C4xD5C8:D5C8xD5C23.C8C8.25D20
kernelC8.25D20C20.4C8C5xM5(2)C2xC8:D5C2xC5:2C8C2xC4xD5C2xDic5C22xD5C40M5(2)C20C2xC8C8C8C2xC4C4C22C5C1
# reps1111224422224448828

Matrix representation of C8.25D20 in GL4(F241) generated by

0010
0001
1544300
1988700
,
1000
0100
002400
000240
,
0100
24018900
0001
00240189
,
0100
1000
0001
0010
G:=sub<GL(4,GF(241))| [0,0,154,198,0,0,43,87,1,0,0,0,0,1,0,0],[1,0,0,0,0,1,0,0,0,0,240,0,0,0,0,240],[0,240,0,0,1,189,0,0,0,0,0,240,0,0,1,189],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C8.25D20 in GAP, Magma, Sage, TeX

C_8._{25}D_{20}
% in TeX

G:=Group("C8.25D20");
// GroupNames label

G:=SmallGroup(320,72);
// by ID

G=gap.SmallGroup(320,72);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,141,36,758,100,570,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^16=b^2=c^5=d^2=1,b*a*b=a^9,a*c=c*a,d*a*d=a*b,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<