Copied to
clipboard

G = C80.2C4order 320 = 26·5

2nd non-split extension by C80 of C4 acting faithfully

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C80.2C4, C16.2F5, D10.4Q16, Dic5.11D8, C4.6(C4⋊F5), C8.23(C2×F5), C52C8.9Q8, C52C16.4C4, C40.23(C2×C4), (C4×D5).77D4, (D5×C16).6C2, C20.13(C4⋊C4), C52(C8.4Q8), C2.7(D5.D8), C10.4(C2.D8), D10.Q8.2C2, (C8×D5).52C22, SmallGroup(320,190)

Series: Derived Chief Lower central Upper central

C1C40 — C80.2C4
C1C5C10C20C4×D5C8×D5D10.Q8 — C80.2C4
C5C10C20C40 — C80.2C4
C1C2C4C8C16

Generators and relations for C80.2C4
 G = < a,b | a80=1, b4=a40, bab-1=a23 >

10C2
5C4
5C22
2D5
5C8
5C2×C4
20C8
20C8
5C2×C8
5C16
10M4(2)
10M4(2)
4C5⋊C8
4C5⋊C8
5C2×C16
5C8.C4
5C8.C4
2C4.F5
2C4.F5
5C8.4Q8

Smallest permutation representation of C80.2C4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 129 61 149 41 89 21 109)(2 136 30 92 42 96 70 132)(3 143 79 115 43 103 39 155)(4 150 48 138 44 110 8 98)(5 157 17 81 45 117 57 121)(6 84 66 104 46 124 26 144)(7 91 35 127 47 131 75 87)(9 105 53 93 49 145 13 133)(10 112 22 116 50 152 62 156)(11 119 71 139 51 159 31 99)(12 126 40 82 52 86 80 122)(14 140 58 128 54 100 18 88)(15 147 27 151 55 107 67 111)(16 154 76 94 56 114 36 134)(19 95 63 83 59 135 23 123)(20 102 32 106 60 142 72 146)(24 130 68 118 64 90 28 158)(25 137 37 141 65 97 77 101)(29 85 73 153 69 125 33 113)(34 120 78 108 74 160 38 148)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,129,61,149,41,89,21,109)(2,136,30,92,42,96,70,132)(3,143,79,115,43,103,39,155)(4,150,48,138,44,110,8,98)(5,157,17,81,45,117,57,121)(6,84,66,104,46,124,26,144)(7,91,35,127,47,131,75,87)(9,105,53,93,49,145,13,133)(10,112,22,116,50,152,62,156)(11,119,71,139,51,159,31,99)(12,126,40,82,52,86,80,122)(14,140,58,128,54,100,18,88)(15,147,27,151,55,107,67,111)(16,154,76,94,56,114,36,134)(19,95,63,83,59,135,23,123)(20,102,32,106,60,142,72,146)(24,130,68,118,64,90,28,158)(25,137,37,141,65,97,77,101)(29,85,73,153,69,125,33,113)(34,120,78,108,74,160,38,148)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,129,61,149,41,89,21,109)(2,136,30,92,42,96,70,132)(3,143,79,115,43,103,39,155)(4,150,48,138,44,110,8,98)(5,157,17,81,45,117,57,121)(6,84,66,104,46,124,26,144)(7,91,35,127,47,131,75,87)(9,105,53,93,49,145,13,133)(10,112,22,116,50,152,62,156)(11,119,71,139,51,159,31,99)(12,126,40,82,52,86,80,122)(14,140,58,128,54,100,18,88)(15,147,27,151,55,107,67,111)(16,154,76,94,56,114,36,134)(19,95,63,83,59,135,23,123)(20,102,32,106,60,142,72,146)(24,130,68,118,64,90,28,158)(25,137,37,141,65,97,77,101)(29,85,73,153,69,125,33,113)(34,120,78,108,74,160,38,148) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,129,61,149,41,89,21,109),(2,136,30,92,42,96,70,132),(3,143,79,115,43,103,39,155),(4,150,48,138,44,110,8,98),(5,157,17,81,45,117,57,121),(6,84,66,104,46,124,26,144),(7,91,35,127,47,131,75,87),(9,105,53,93,49,145,13,133),(10,112,22,116,50,152,62,156),(11,119,71,139,51,159,31,99),(12,126,40,82,52,86,80,122),(14,140,58,128,54,100,18,88),(15,147,27,151,55,107,67,111),(16,154,76,94,56,114,36,134),(19,95,63,83,59,135,23,123),(20,102,32,106,60,142,72,146),(24,130,68,118,64,90,28,158),(25,137,37,141,65,97,77,101),(29,85,73,153,69,125,33,113),(34,120,78,108,74,160,38,148)]])

38 conjugacy classes

class 1 2A2B4A4B4C 5 8A8B8C8D8E8F8G8H 10 16A16B16C16D16E16F16G16H20A20B40A40B40C40D80A···80H
order12244458888888810161616161616161620204040404080···80
size111025542210104040404042222101010104444444···4

38 irreducible representations

dim111112222244444
type+++-++-++
imageC1C2C2C4C4Q8D4D8Q16C8.4Q8F5C2×F5C4⋊F5D5.D8C80.2C4
kernelC80.2C4D5×C16D10.Q8C52C16C80C52C8C4×D5Dic5D10C5C16C8C4C2C1
# reps112221122811248

Matrix representation of C80.2C4 in GL4(𝔽7) generated by

2616
5614
2602
2024
,
1354
0443
2333
4146
G:=sub<GL(4,GF(7))| [2,5,2,2,6,6,6,0,1,1,0,2,6,4,2,4],[1,0,2,4,3,4,3,1,5,4,3,4,4,3,3,6] >;

C80.2C4 in GAP, Magma, Sage, TeX

C_{80}._2C_4
% in TeX

G:=Group("C80.2C4");
// GroupNames label

G:=SmallGroup(320,190);
// by ID

G=gap.SmallGroup(320,190);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,176,184,1571,80,1684,102,6278,3156]);
// Polycyclic

G:=Group<a,b|a^80=1,b^4=a^40,b*a*b^-1=a^23>;
// generators/relations

Export

Subgroup lattice of C80.2C4 in TeX

׿
×
𝔽