metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D10.8Q16, C2.D8⋊4D5, C4⋊C4.49D10, (C2×C8).28D10, C2.14(D5×Q16), C10.24(C2×Q16), C20.39(C4○D4), C4.81(C4○D20), C10.D8⋊22C2, C10.Q16⋊19C2, D10⋊2Q8.8C2, (C2×Dic5).57D4, C22.230(D4×D5), D10⋊1C8.10C2, C2.22(D8⋊D5), C20.44D4⋊26C2, C10.41(C8⋊C22), (C2×C40).242C22, (C2×C20).300C23, C4.29(Q8⋊2D5), (C22×D5).123D4, C5⋊3(C23.48D4), C4⋊Dic5.125C22, (C2×Dic10).93C22, C2.16(D10.13D4), C10.46(C22.D4), (D5×C4⋊C4).9C2, (C5×C2.D8)⋊12C2, (C2×C4×D5).43C22, (C2×C10).305(C2×D4), (C5×C4⋊C4).93C22, (C2×C5⋊2C8).70C22, (C2×C4).403(C22×D5), SmallGroup(320,511)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D10.8Q16
G = < a,b,c,d | a10=b2=c8=1, d2=a5c4, bab=a-1, ac=ca, ad=da, cbc-1=a5b, bd=db, dcd-1=c-1 >
Subgroups: 430 in 104 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, D5, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×Q8, Dic5, C20, C20, D10, D10, C2×C10, C22⋊C8, Q8⋊C4, C2.D8, C2.D8, C2×C4⋊C4, C22⋊Q8, C5⋊2C8, C40, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C23.48D4, C2×C5⋊2C8, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, C2×C4×D5, C10.D8, C10.Q16, C20.44D4, D10⋊1C8, C5×C2.D8, D5×C4⋊C4, D10⋊2Q8, D10.8Q16
Quotients: C1, C2, C22, D4, C23, D5, Q16, C2×D4, C4○D4, D10, C22.D4, C2×Q16, C8⋊C22, C22×D5, C23.48D4, C4○D20, D4×D5, Q8⋊2D5, D10.13D4, D8⋊D5, D5×Q16, D10.8Q16
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 20)(10 19)(21 134)(22 133)(23 132)(24 131)(25 140)(26 139)(27 138)(28 137)(29 136)(30 135)(31 44)(32 43)(33 42)(34 41)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(51 88)(52 87)(53 86)(54 85)(55 84)(56 83)(57 82)(58 81)(59 90)(60 89)(61 74)(62 73)(63 72)(64 71)(65 80)(66 79)(67 78)(68 77)(69 76)(70 75)(91 123)(92 122)(93 121)(94 130)(95 129)(96 128)(97 127)(98 126)(99 125)(100 124)(101 119)(102 118)(103 117)(104 116)(105 115)(106 114)(107 113)(108 112)(109 111)(110 120)(141 154)(142 153)(143 152)(144 151)(145 160)(146 159)(147 158)(148 157)(149 156)(150 155)
(1 85 45 68 19 60 31 73)(2 86 46 69 20 51 32 74)(3 87 47 70 11 52 33 75)(4 88 48 61 12 53 34 76)(5 89 49 62 13 54 35 77)(6 90 50 63 14 55 36 78)(7 81 41 64 15 56 37 79)(8 82 42 65 16 57 38 80)(9 83 43 66 17 58 39 71)(10 84 44 67 18 59 40 72)(21 113 153 100 140 108 148 125)(22 114 154 91 131 109 149 126)(23 115 155 92 132 110 150 127)(24 116 156 93 133 101 141 128)(25 117 157 94 134 102 142 129)(26 118 158 95 135 103 143 130)(27 119 159 96 136 104 144 121)(28 120 160 97 137 105 145 122)(29 111 151 98 138 106 146 123)(30 112 152 99 139 107 147 124)
(1 103 14 113)(2 104 15 114)(3 105 16 115)(4 106 17 116)(5 107 18 117)(6 108 19 118)(7 109 20 119)(8 110 11 120)(9 101 12 111)(10 102 13 112)(21 85 135 55)(22 86 136 56)(23 87 137 57)(24 88 138 58)(25 89 139 59)(26 90 140 60)(27 81 131 51)(28 82 132 52)(29 83 133 53)(30 84 134 54)(31 130 50 100)(32 121 41 91)(33 122 42 92)(34 123 43 93)(35 124 44 94)(36 125 45 95)(37 126 46 96)(38 127 47 97)(39 128 48 98)(40 129 49 99)(61 151 71 141)(62 152 72 142)(63 153 73 143)(64 154 74 144)(65 155 75 145)(66 156 76 146)(67 157 77 147)(68 158 78 148)(69 159 79 149)(70 160 80 150)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,20)(10,19)(21,134)(22,133)(23,132)(24,131)(25,140)(26,139)(27,138)(28,137)(29,136)(30,135)(31,44)(32,43)(33,42)(34,41)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(51,88)(52,87)(53,86)(54,85)(55,84)(56,83)(57,82)(58,81)(59,90)(60,89)(61,74)(62,73)(63,72)(64,71)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(91,123)(92,122)(93,121)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)(110,120)(141,154)(142,153)(143,152)(144,151)(145,160)(146,159)(147,158)(148,157)(149,156)(150,155), (1,85,45,68,19,60,31,73)(2,86,46,69,20,51,32,74)(3,87,47,70,11,52,33,75)(4,88,48,61,12,53,34,76)(5,89,49,62,13,54,35,77)(6,90,50,63,14,55,36,78)(7,81,41,64,15,56,37,79)(8,82,42,65,16,57,38,80)(9,83,43,66,17,58,39,71)(10,84,44,67,18,59,40,72)(21,113,153,100,140,108,148,125)(22,114,154,91,131,109,149,126)(23,115,155,92,132,110,150,127)(24,116,156,93,133,101,141,128)(25,117,157,94,134,102,142,129)(26,118,158,95,135,103,143,130)(27,119,159,96,136,104,144,121)(28,120,160,97,137,105,145,122)(29,111,151,98,138,106,146,123)(30,112,152,99,139,107,147,124), (1,103,14,113)(2,104,15,114)(3,105,16,115)(4,106,17,116)(5,107,18,117)(6,108,19,118)(7,109,20,119)(8,110,11,120)(9,101,12,111)(10,102,13,112)(21,85,135,55)(22,86,136,56)(23,87,137,57)(24,88,138,58)(25,89,139,59)(26,90,140,60)(27,81,131,51)(28,82,132,52)(29,83,133,53)(30,84,134,54)(31,130,50,100)(32,121,41,91)(33,122,42,92)(34,123,43,93)(35,124,44,94)(36,125,45,95)(37,126,46,96)(38,127,47,97)(39,128,48,98)(40,129,49,99)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,20)(10,19)(21,134)(22,133)(23,132)(24,131)(25,140)(26,139)(27,138)(28,137)(29,136)(30,135)(31,44)(32,43)(33,42)(34,41)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(51,88)(52,87)(53,86)(54,85)(55,84)(56,83)(57,82)(58,81)(59,90)(60,89)(61,74)(62,73)(63,72)(64,71)(65,80)(66,79)(67,78)(68,77)(69,76)(70,75)(91,123)(92,122)(93,121)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)(110,120)(141,154)(142,153)(143,152)(144,151)(145,160)(146,159)(147,158)(148,157)(149,156)(150,155), (1,85,45,68,19,60,31,73)(2,86,46,69,20,51,32,74)(3,87,47,70,11,52,33,75)(4,88,48,61,12,53,34,76)(5,89,49,62,13,54,35,77)(6,90,50,63,14,55,36,78)(7,81,41,64,15,56,37,79)(8,82,42,65,16,57,38,80)(9,83,43,66,17,58,39,71)(10,84,44,67,18,59,40,72)(21,113,153,100,140,108,148,125)(22,114,154,91,131,109,149,126)(23,115,155,92,132,110,150,127)(24,116,156,93,133,101,141,128)(25,117,157,94,134,102,142,129)(26,118,158,95,135,103,143,130)(27,119,159,96,136,104,144,121)(28,120,160,97,137,105,145,122)(29,111,151,98,138,106,146,123)(30,112,152,99,139,107,147,124), (1,103,14,113)(2,104,15,114)(3,105,16,115)(4,106,17,116)(5,107,18,117)(6,108,19,118)(7,109,20,119)(8,110,11,120)(9,101,12,111)(10,102,13,112)(21,85,135,55)(22,86,136,56)(23,87,137,57)(24,88,138,58)(25,89,139,59)(26,90,140,60)(27,81,131,51)(28,82,132,52)(29,83,133,53)(30,84,134,54)(31,130,50,100)(32,121,41,91)(33,122,42,92)(34,123,43,93)(35,124,44,94)(36,125,45,95)(37,126,46,96)(38,127,47,97)(39,128,48,98)(40,129,49,99)(61,151,71,141)(62,152,72,142)(63,153,73,143)(64,154,74,144)(65,155,75,145)(66,156,76,146)(67,157,77,147)(68,158,78,148)(69,159,79,149)(70,160,80,150) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,20),(10,19),(21,134),(22,133),(23,132),(24,131),(25,140),(26,139),(27,138),(28,137),(29,136),(30,135),(31,44),(32,43),(33,42),(34,41),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(51,88),(52,87),(53,86),(54,85),(55,84),(56,83),(57,82),(58,81),(59,90),(60,89),(61,74),(62,73),(63,72),(64,71),(65,80),(66,79),(67,78),(68,77),(69,76),(70,75),(91,123),(92,122),(93,121),(94,130),(95,129),(96,128),(97,127),(98,126),(99,125),(100,124),(101,119),(102,118),(103,117),(104,116),(105,115),(106,114),(107,113),(108,112),(109,111),(110,120),(141,154),(142,153),(143,152),(144,151),(145,160),(146,159),(147,158),(148,157),(149,156),(150,155)], [(1,85,45,68,19,60,31,73),(2,86,46,69,20,51,32,74),(3,87,47,70,11,52,33,75),(4,88,48,61,12,53,34,76),(5,89,49,62,13,54,35,77),(6,90,50,63,14,55,36,78),(7,81,41,64,15,56,37,79),(8,82,42,65,16,57,38,80),(9,83,43,66,17,58,39,71),(10,84,44,67,18,59,40,72),(21,113,153,100,140,108,148,125),(22,114,154,91,131,109,149,126),(23,115,155,92,132,110,150,127),(24,116,156,93,133,101,141,128),(25,117,157,94,134,102,142,129),(26,118,158,95,135,103,143,130),(27,119,159,96,136,104,144,121),(28,120,160,97,137,105,145,122),(29,111,151,98,138,106,146,123),(30,112,152,99,139,107,147,124)], [(1,103,14,113),(2,104,15,114),(3,105,16,115),(4,106,17,116),(5,107,18,117),(6,108,19,118),(7,109,20,119),(8,110,11,120),(9,101,12,111),(10,102,13,112),(21,85,135,55),(22,86,136,56),(23,87,137,57),(24,88,138,58),(25,89,139,59),(26,90,140,60),(27,81,131,51),(28,82,132,52),(29,83,133,53),(30,84,134,54),(31,130,50,100),(32,121,41,91),(33,122,42,92),(34,123,43,93),(35,124,44,94),(36,125,45,95),(37,126,46,96),(38,127,47,97),(39,128,48,98),(40,129,49,99),(61,151,71,141),(62,152,72,142),(63,153,73,143),(64,154,74,144),(65,155,75,145),(66,156,76,146),(67,157,77,147),(68,158,78,148),(69,159,79,149),(70,160,80,150)]])
47 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 20A | 20B | 20C | 20D | 20E | ··· | 20L | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 2 | 2 | 4 | 4 | 8 | 20 | 20 | 20 | 40 | 2 | 2 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
47 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | C4○D4 | Q16 | D10 | D10 | C4○D20 | C8⋊C22 | Q8⋊2D5 | D4×D5 | D8⋊D5 | D5×Q16 |
kernel | D10.8Q16 | C10.D8 | C10.Q16 | C20.44D4 | D10⋊1C8 | C5×C2.D8 | D5×C4⋊C4 | D10⋊2Q8 | C2×Dic5 | C22×D5 | C2.D8 | C20 | D10 | C4⋊C4 | C2×C8 | C4 | C10 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 8 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of D10.8Q16 ►in GL4(𝔽41) generated by
34 | 34 | 0 | 0 |
7 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
34 | 34 | 0 | 0 |
1 | 7 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
17 | 40 | 0 | 0 |
1 | 24 | 0 | 0 |
0 | 0 | 0 | 7 |
0 | 0 | 35 | 24 |
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 17 | 2 |
0 | 0 | 19 | 24 |
G:=sub<GL(4,GF(41))| [34,7,0,0,34,1,0,0,0,0,1,0,0,0,0,1],[34,1,0,0,34,7,0,0,0,0,40,0,0,0,0,40],[17,1,0,0,40,24,0,0,0,0,0,35,0,0,7,24],[9,0,0,0,0,9,0,0,0,0,17,19,0,0,2,24] >;
D10.8Q16 in GAP, Magma, Sage, TeX
D_{10}._8Q_{16}
% in TeX
G:=Group("D10.8Q16");
// GroupNames label
G:=SmallGroup(320,511);
// by ID
G=gap.SmallGroup(320,511);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,64,926,219,268,851,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=c^8=1,d^2=a^5*c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations