Copied to
clipboard

G = C87D20order 320 = 26·5

1st semidirect product of C8 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C87D20, C404D4, D102D8, C2.D83D5, C52(C87D4), C2.14(D5×D8), (C2×D40)⋊16C2, C4⋊D207C2, C4⋊C4.48D10, C4.53(C2×D20), C10.30(C2×D8), (C2×C8).231D10, C20.133(C2×D4), D206C421C2, C10.75(C4○D8), C20.38(C4○D4), (C2×C40).83C22, C4.9(Q82D5), (C22×D5).86D4, C22.229(D4×D5), C10.46(C4⋊D4), C2.19(C4⋊D20), (C2×C20).299C23, (C2×Dic5).148D4, (C2×D20).86C22, C2.13(Q8.D10), (D5×C2×C8)⋊2C2, (C5×C2.D8)⋊5C2, (C2×C10).304(C2×D4), (C5×C4⋊C4).92C22, (C2×C4×D5).306C22, (C2×C4).402(C22×D5), (C2×C52C8).243C22, SmallGroup(320,510)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C87D20
C1C5C10C2×C10C2×C20C2×C4×D5D5×C2×C8 — C87D20
C5C10C2×C20 — C87D20
C1C22C2×C4C2.D8

Generators and relations for C87D20
 G = < a,b,c | a8=b20=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 742 in 134 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, C23, D5, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, Dic5, C20, C20, D10, D10, C2×C10, D4⋊C4, C2.D8, C4⋊D4, C22×C8, C2×D8, C52C8, C40, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C87D4, C8×D5, D40, C2×C52C8, D10⋊C4, C5×C4⋊C4, C2×C40, C2×C4×D5, C2×D20, C2×D20, D206C4, C5×C2.D8, C4⋊D20, D5×C2×C8, C2×D40, C87D20
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, C4○D4, D10, C4⋊D4, C2×D8, C4○D8, D20, C22×D5, C87D4, C2×D20, D4×D5, Q82D5, C4⋊D20, D5×D8, Q8.D10, C87D20

Smallest permutation representation of C87D20
On 160 points
Generators in S160
(1 124 46 89 74 111 144 23)(2 24 145 112 75 90 47 125)(3 126 48 91 76 113 146 25)(4 26 147 114 77 92 49 127)(5 128 50 93 78 115 148 27)(6 28 149 116 79 94 51 129)(7 130 52 95 80 117 150 29)(8 30 151 118 61 96 53 131)(9 132 54 97 62 119 152 31)(10 32 153 120 63 98 55 133)(11 134 56 99 64 101 154 33)(12 34 155 102 65 100 57 135)(13 136 58 81 66 103 156 35)(14 36 157 104 67 82 59 137)(15 138 60 83 68 105 158 37)(16 38 159 106 69 84 41 139)(17 140 42 85 70 107 160 39)(18 40 141 108 71 86 43 121)(19 122 44 87 72 109 142 21)(20 22 143 110 73 88 45 123)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 140)(22 139)(23 138)(24 137)(25 136)(26 135)(27 134)(28 133)(29 132)(30 131)(31 130)(32 129)(33 128)(34 127)(35 126)(36 125)(37 124)(38 123)(39 122)(40 121)(41 143)(42 142)(43 141)(44 160)(45 159)(46 158)(47 157)(48 156)(49 155)(50 154)(51 153)(52 152)(53 151)(54 150)(55 149)(56 148)(57 147)(58 146)(59 145)(60 144)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)(81 113)(82 112)(83 111)(84 110)(85 109)(86 108)(87 107)(88 106)(89 105)(90 104)(91 103)(92 102)(93 101)(94 120)(95 119)(96 118)(97 117)(98 116)(99 115)(100 114)

G:=sub<Sym(160)| (1,124,46,89,74,111,144,23)(2,24,145,112,75,90,47,125)(3,126,48,91,76,113,146,25)(4,26,147,114,77,92,49,127)(5,128,50,93,78,115,148,27)(6,28,149,116,79,94,51,129)(7,130,52,95,80,117,150,29)(8,30,151,118,61,96,53,131)(9,132,54,97,62,119,152,31)(10,32,153,120,63,98,55,133)(11,134,56,99,64,101,154,33)(12,34,155,102,65,100,57,135)(13,136,58,81,66,103,156,35)(14,36,157,104,67,82,59,137)(15,138,60,83,68,105,158,37)(16,38,159,106,69,84,41,139)(17,140,42,85,70,107,160,39)(18,40,141,108,71,86,43,121)(19,122,44,87,72,109,142,21)(20,22,143,110,73,88,45,123), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,140)(22,139)(23,138)(24,137)(25,136)(26,135)(27,134)(28,133)(29,132)(30,131)(31,130)(32,129)(33,128)(34,127)(35,126)(36,125)(37,124)(38,123)(39,122)(40,121)(41,143)(42,142)(43,141)(44,160)(45,159)(46,158)(47,157)(48,156)(49,155)(50,154)(51,153)(52,152)(53,151)(54,150)(55,149)(56,148)(57,147)(58,146)(59,145)(60,144)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(81,113)(82,112)(83,111)(84,110)(85,109)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,120)(95,119)(96,118)(97,117)(98,116)(99,115)(100,114)>;

G:=Group( (1,124,46,89,74,111,144,23)(2,24,145,112,75,90,47,125)(3,126,48,91,76,113,146,25)(4,26,147,114,77,92,49,127)(5,128,50,93,78,115,148,27)(6,28,149,116,79,94,51,129)(7,130,52,95,80,117,150,29)(8,30,151,118,61,96,53,131)(9,132,54,97,62,119,152,31)(10,32,153,120,63,98,55,133)(11,134,56,99,64,101,154,33)(12,34,155,102,65,100,57,135)(13,136,58,81,66,103,156,35)(14,36,157,104,67,82,59,137)(15,138,60,83,68,105,158,37)(16,38,159,106,69,84,41,139)(17,140,42,85,70,107,160,39)(18,40,141,108,71,86,43,121)(19,122,44,87,72,109,142,21)(20,22,143,110,73,88,45,123), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,140)(22,139)(23,138)(24,137)(25,136)(26,135)(27,134)(28,133)(29,132)(30,131)(31,130)(32,129)(33,128)(34,127)(35,126)(36,125)(37,124)(38,123)(39,122)(40,121)(41,143)(42,142)(43,141)(44,160)(45,159)(46,158)(47,157)(48,156)(49,155)(50,154)(51,153)(52,152)(53,151)(54,150)(55,149)(56,148)(57,147)(58,146)(59,145)(60,144)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(81,113)(82,112)(83,111)(84,110)(85,109)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,120)(95,119)(96,118)(97,117)(98,116)(99,115)(100,114) );

G=PermutationGroup([[(1,124,46,89,74,111,144,23),(2,24,145,112,75,90,47,125),(3,126,48,91,76,113,146,25),(4,26,147,114,77,92,49,127),(5,128,50,93,78,115,148,27),(6,28,149,116,79,94,51,129),(7,130,52,95,80,117,150,29),(8,30,151,118,61,96,53,131),(9,132,54,97,62,119,152,31),(10,32,153,120,63,98,55,133),(11,134,56,99,64,101,154,33),(12,34,155,102,65,100,57,135),(13,136,58,81,66,103,156,35),(14,36,157,104,67,82,59,137),(15,138,60,83,68,105,158,37),(16,38,159,106,69,84,41,139),(17,140,42,85,70,107,160,39),(18,40,141,108,71,86,43,121),(19,122,44,87,72,109,142,21),(20,22,143,110,73,88,45,123)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,140),(22,139),(23,138),(24,137),(25,136),(26,135),(27,134),(28,133),(29,132),(30,131),(31,130),(32,129),(33,128),(34,127),(35,126),(36,125),(37,124),(38,123),(39,122),(40,121),(41,143),(42,142),(43,141),(44,160),(45,159),(46,158),(47,157),(48,156),(49,155),(50,154),(51,153),(52,152),(53,151),(54,150),(55,149),(56,148),(57,147),(58,146),(59,145),(60,144),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72),(81,113),(82,112),(83,111),(84,110),(85,109),(86,108),(87,107),(88,106),(89,105),(90,104),(91,103),(92,102),(93,101),(94,120),(95,119),(96,118),(97,117),(98,116),(99,115),(100,114)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F5A5B8A8B8C8D8E8F8G8H10A···10F20A20B20C20D20E···20L40A···40H
order12222222444444558888888810···102020202020···2040···40
size11111010404022881010222222101010102···244448···84···4

50 irreducible representations

dim11111122222222224444
type++++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D5C4○D4D8D10D10C4○D8D20Q82D5D4×D5D5×D8Q8.D10
kernelC87D20D206C4C5×C2.D8C4⋊D20D5×C2×C8C2×D40C40C2×Dic5C22×D5C2.D8C20D10C4⋊C4C2×C8C10C8C4C22C2C2
# reps12121121122442482244

Matrix representation of C87D20 in GL4(𝔽41) generated by

40000
04000
00030
001517
,
323000
112700
00320
00409
,
04000
40000
004018
0001
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,0,15,0,0,30,17],[32,11,0,0,30,27,0,0,0,0,32,40,0,0,0,9],[0,40,0,0,40,0,0,0,0,0,40,0,0,0,18,1] >;

C87D20 in GAP, Magma, Sage, TeX

C_8\rtimes_7D_{20}
% in TeX

G:=Group("C8:7D20");
// GroupNames label

G:=SmallGroup(320,510);
// by ID

G=gap.SmallGroup(320,510);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,254,219,58,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^8=b^20=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽