Copied to
clipboard

G = D5×C4.Q8order 320 = 26·5

Direct product of D5 and C4.Q8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C4.Q8, D10.22SD16, (C8×D5)⋊3C4, C814(C4×D5), C4024(C2×C4), C4.23(Q8×D5), C406C424C2, (C4×D5).13Q8, C20.12(C2×Q8), C2.6(D5×SD16), C4⋊C4.160D10, (C2×C8).258D10, C22.83(D4×D5), D10.36(C4⋊C4), C20.Q814C2, C10.37(C2×SD16), Dic5.15(C4⋊C4), C20.101(C22×C4), (C2×C40).159C22, (C2×C20).275C23, (C2×Dic5).143D4, (C22×D5).154D4, C4⋊Dic5.107C22, C52(C2×C4.Q8), (D5×C2×C8).7C2, C4.76(C2×C4×D5), (D5×C4⋊C4).4C2, C2.11(D5×C4⋊C4), (C5×C4.Q8)⋊7C2, C52C827(C2×C4), C10.33(C2×C4⋊C4), (C4×D5).73(C2×C4), (C2×C10).280(C2×D4), (C5×C4⋊C4).68C22, (C2×C4×D5).301C22, (C2×C4).378(C22×D5), (C2×C52C8).234C22, SmallGroup(320,486)

Series: Derived Chief Lower central Upper central

C1C20 — D5×C4.Q8
C1C5C10C2×C10C2×C20C2×C4×D5D5×C2×C8 — D5×C4.Q8
C5C10C20 — D5×C4.Q8
C1C22C2×C4C4.Q8

Generators and relations for D5×C4.Q8
 G = < a,b,c,d,e | a5=b2=c4=1, d4=c2, e2=c-1d2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >

Subgroups: 478 in 130 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, C10, C10, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, Dic5, Dic5, C20, C20, D10, C2×C10, C4.Q8, C4.Q8, C2×C4⋊C4, C22×C8, C52C8, C40, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C2×C4.Q8, C8×D5, C2×C52C8, C10.D4, C4⋊Dic5, C5×C4⋊C4, C2×C40, C2×C4×D5, C2×C4×D5, C20.Q8, C406C4, C5×C4.Q8, D5×C4⋊C4, D5×C2×C8, D5×C4.Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C4⋊C4, SD16, C22×C4, C2×D4, C2×Q8, D10, C4.Q8, C2×C4⋊C4, C2×SD16, C4×D5, C22×D5, C2×C4.Q8, C2×C4×D5, D4×D5, Q8×D5, D5×C4⋊C4, D5×SD16, D5×C4.Q8

Smallest permutation representation of D5×C4.Q8
On 160 points
Generators in S160
(1 113 23 133 39)(2 114 24 134 40)(3 115 17 135 33)(4 116 18 136 34)(5 117 19 129 35)(6 118 20 130 36)(7 119 21 131 37)(8 120 22 132 38)(9 47 88 55 91)(10 48 81 56 92)(11 41 82 49 93)(12 42 83 50 94)(13 43 84 51 95)(14 44 85 52 96)(15 45 86 53 89)(16 46 87 54 90)(25 66 60 108 145)(26 67 61 109 146)(27 68 62 110 147)(28 69 63 111 148)(29 70 64 112 149)(30 71 57 105 150)(31 72 58 106 151)(32 65 59 107 152)(73 137 159 124 98)(74 138 160 125 99)(75 139 153 126 100)(76 140 154 127 101)(77 141 155 128 102)(78 142 156 121 103)(79 143 157 122 104)(80 144 158 123 97)
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 33)(8 34)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 149)(26 150)(27 151)(28 152)(29 145)(30 146)(31 147)(32 148)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)(49 86)(50 87)(51 88)(52 81)(53 82)(54 83)(55 84)(56 85)(57 61)(58 62)(59 63)(60 64)(65 111)(66 112)(67 105)(68 106)(69 107)(70 108)(71 109)(72 110)(73 128)(74 121)(75 122)(76 123)(77 124)(78 125)(79 126)(80 127)(97 101)(98 102)(99 103)(100 104)(113 129)(114 130)(115 131)(116 132)(117 133)(118 134)(119 135)(120 136)(137 155)(138 156)(139 157)(140 158)(141 159)(142 160)(143 153)(144 154)
(1 30 5 26)(2 31 6 27)(3 32 7 28)(4 25 8 29)(9 104 13 100)(10 97 14 101)(11 98 15 102)(12 99 16 103)(17 59 21 63)(18 60 22 64)(19 61 23 57)(20 62 24 58)(33 152 37 148)(34 145 38 149)(35 146 39 150)(36 147 40 151)(41 73 45 77)(42 74 46 78)(43 75 47 79)(44 76 48 80)(49 159 53 155)(50 160 54 156)(51 153 55 157)(52 154 56 158)(65 119 69 115)(66 120 70 116)(67 113 71 117)(68 114 72 118)(81 144 85 140)(82 137 86 141)(83 138 87 142)(84 139 88 143)(89 128 93 124)(90 121 94 125)(91 122 95 126)(92 123 96 127)(105 129 109 133)(106 130 110 134)(107 131 111 135)(108 132 112 136)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 55 28 155)(2 50 29 158)(3 53 30 153)(4 56 31 156)(5 51 32 159)(6 54 25 154)(7 49 26 157)(8 52 27 160)(9 63 102 23)(10 58 103 18)(11 61 104 21)(12 64 97 24)(13 59 98 19)(14 62 99 22)(15 57 100 17)(16 60 101 20)(33 86 150 139)(34 81 151 142)(35 84 152 137)(36 87 145 140)(37 82 146 143)(38 85 147 138)(39 88 148 141)(40 83 149 144)(41 109 79 131)(42 112 80 134)(43 107 73 129)(44 110 74 132)(45 105 75 135)(46 108 76 130)(47 111 77 133)(48 106 78 136)(65 124 117 95)(66 127 118 90)(67 122 119 93)(68 125 120 96)(69 128 113 91)(70 123 114 94)(71 126 115 89)(72 121 116 92)

G:=sub<Sym(160)| (1,113,23,133,39)(2,114,24,134,40)(3,115,17,135,33)(4,116,18,136,34)(5,117,19,129,35)(6,118,20,130,36)(7,119,21,131,37)(8,120,22,132,38)(9,47,88,55,91)(10,48,81,56,92)(11,41,82,49,93)(12,42,83,50,94)(13,43,84,51,95)(14,44,85,52,96)(15,45,86,53,89)(16,46,87,54,90)(25,66,60,108,145)(26,67,61,109,146)(27,68,62,110,147)(28,69,63,111,148)(29,70,64,112,149)(30,71,57,105,150)(31,72,58,106,151)(32,65,59,107,152)(73,137,159,124,98)(74,138,160,125,99)(75,139,153,126,100)(76,140,154,127,101)(77,141,155,128,102)(78,142,156,121,103)(79,143,157,122,104)(80,144,158,123,97), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,149)(26,150)(27,151)(28,152)(29,145)(30,146)(31,147)(32,148)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,86)(50,87)(51,88)(52,81)(53,82)(54,83)(55,84)(56,85)(57,61)(58,62)(59,63)(60,64)(65,111)(66,112)(67,105)(68,106)(69,107)(70,108)(71,109)(72,110)(73,128)(74,121)(75,122)(76,123)(77,124)(78,125)(79,126)(80,127)(97,101)(98,102)(99,103)(100,104)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136)(137,155)(138,156)(139,157)(140,158)(141,159)(142,160)(143,153)(144,154), (1,30,5,26)(2,31,6,27)(3,32,7,28)(4,25,8,29)(9,104,13,100)(10,97,14,101)(11,98,15,102)(12,99,16,103)(17,59,21,63)(18,60,22,64)(19,61,23,57)(20,62,24,58)(33,152,37,148)(34,145,38,149)(35,146,39,150)(36,147,40,151)(41,73,45,77)(42,74,46,78)(43,75,47,79)(44,76,48,80)(49,159,53,155)(50,160,54,156)(51,153,55,157)(52,154,56,158)(65,119,69,115)(66,120,70,116)(67,113,71,117)(68,114,72,118)(81,144,85,140)(82,137,86,141)(83,138,87,142)(84,139,88,143)(89,128,93,124)(90,121,94,125)(91,122,95,126)(92,123,96,127)(105,129,109,133)(106,130,110,134)(107,131,111,135)(108,132,112,136), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,55,28,155)(2,50,29,158)(3,53,30,153)(4,56,31,156)(5,51,32,159)(6,54,25,154)(7,49,26,157)(8,52,27,160)(9,63,102,23)(10,58,103,18)(11,61,104,21)(12,64,97,24)(13,59,98,19)(14,62,99,22)(15,57,100,17)(16,60,101,20)(33,86,150,139)(34,81,151,142)(35,84,152,137)(36,87,145,140)(37,82,146,143)(38,85,147,138)(39,88,148,141)(40,83,149,144)(41,109,79,131)(42,112,80,134)(43,107,73,129)(44,110,74,132)(45,105,75,135)(46,108,76,130)(47,111,77,133)(48,106,78,136)(65,124,117,95)(66,127,118,90)(67,122,119,93)(68,125,120,96)(69,128,113,91)(70,123,114,94)(71,126,115,89)(72,121,116,92)>;

G:=Group( (1,113,23,133,39)(2,114,24,134,40)(3,115,17,135,33)(4,116,18,136,34)(5,117,19,129,35)(6,118,20,130,36)(7,119,21,131,37)(8,120,22,132,38)(9,47,88,55,91)(10,48,81,56,92)(11,41,82,49,93)(12,42,83,50,94)(13,43,84,51,95)(14,44,85,52,96)(15,45,86,53,89)(16,46,87,54,90)(25,66,60,108,145)(26,67,61,109,146)(27,68,62,110,147)(28,69,63,111,148)(29,70,64,112,149)(30,71,57,105,150)(31,72,58,106,151)(32,65,59,107,152)(73,137,159,124,98)(74,138,160,125,99)(75,139,153,126,100)(76,140,154,127,101)(77,141,155,128,102)(78,142,156,121,103)(79,143,157,122,104)(80,144,158,123,97), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,149)(26,150)(27,151)(28,152)(29,145)(30,146)(31,147)(32,148)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,86)(50,87)(51,88)(52,81)(53,82)(54,83)(55,84)(56,85)(57,61)(58,62)(59,63)(60,64)(65,111)(66,112)(67,105)(68,106)(69,107)(70,108)(71,109)(72,110)(73,128)(74,121)(75,122)(76,123)(77,124)(78,125)(79,126)(80,127)(97,101)(98,102)(99,103)(100,104)(113,129)(114,130)(115,131)(116,132)(117,133)(118,134)(119,135)(120,136)(137,155)(138,156)(139,157)(140,158)(141,159)(142,160)(143,153)(144,154), (1,30,5,26)(2,31,6,27)(3,32,7,28)(4,25,8,29)(9,104,13,100)(10,97,14,101)(11,98,15,102)(12,99,16,103)(17,59,21,63)(18,60,22,64)(19,61,23,57)(20,62,24,58)(33,152,37,148)(34,145,38,149)(35,146,39,150)(36,147,40,151)(41,73,45,77)(42,74,46,78)(43,75,47,79)(44,76,48,80)(49,159,53,155)(50,160,54,156)(51,153,55,157)(52,154,56,158)(65,119,69,115)(66,120,70,116)(67,113,71,117)(68,114,72,118)(81,144,85,140)(82,137,86,141)(83,138,87,142)(84,139,88,143)(89,128,93,124)(90,121,94,125)(91,122,95,126)(92,123,96,127)(105,129,109,133)(106,130,110,134)(107,131,111,135)(108,132,112,136), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,55,28,155)(2,50,29,158)(3,53,30,153)(4,56,31,156)(5,51,32,159)(6,54,25,154)(7,49,26,157)(8,52,27,160)(9,63,102,23)(10,58,103,18)(11,61,104,21)(12,64,97,24)(13,59,98,19)(14,62,99,22)(15,57,100,17)(16,60,101,20)(33,86,150,139)(34,81,151,142)(35,84,152,137)(36,87,145,140)(37,82,146,143)(38,85,147,138)(39,88,148,141)(40,83,149,144)(41,109,79,131)(42,112,80,134)(43,107,73,129)(44,110,74,132)(45,105,75,135)(46,108,76,130)(47,111,77,133)(48,106,78,136)(65,124,117,95)(66,127,118,90)(67,122,119,93)(68,125,120,96)(69,128,113,91)(70,123,114,94)(71,126,115,89)(72,121,116,92) );

G=PermutationGroup([[(1,113,23,133,39),(2,114,24,134,40),(3,115,17,135,33),(4,116,18,136,34),(5,117,19,129,35),(6,118,20,130,36),(7,119,21,131,37),(8,120,22,132,38),(9,47,88,55,91),(10,48,81,56,92),(11,41,82,49,93),(12,42,83,50,94),(13,43,84,51,95),(14,44,85,52,96),(15,45,86,53,89),(16,46,87,54,90),(25,66,60,108,145),(26,67,61,109,146),(27,68,62,110,147),(28,69,63,111,148),(29,70,64,112,149),(30,71,57,105,150),(31,72,58,106,151),(32,65,59,107,152),(73,137,159,124,98),(74,138,160,125,99),(75,139,153,126,100),(76,140,154,127,101),(77,141,155,128,102),(78,142,156,121,103),(79,143,157,122,104),(80,144,158,123,97)], [(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,33),(8,34),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,149),(26,150),(27,151),(28,152),(29,145),(30,146),(31,147),(32,148),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96),(49,86),(50,87),(51,88),(52,81),(53,82),(54,83),(55,84),(56,85),(57,61),(58,62),(59,63),(60,64),(65,111),(66,112),(67,105),(68,106),(69,107),(70,108),(71,109),(72,110),(73,128),(74,121),(75,122),(76,123),(77,124),(78,125),(79,126),(80,127),(97,101),(98,102),(99,103),(100,104),(113,129),(114,130),(115,131),(116,132),(117,133),(118,134),(119,135),(120,136),(137,155),(138,156),(139,157),(140,158),(141,159),(142,160),(143,153),(144,154)], [(1,30,5,26),(2,31,6,27),(3,32,7,28),(4,25,8,29),(9,104,13,100),(10,97,14,101),(11,98,15,102),(12,99,16,103),(17,59,21,63),(18,60,22,64),(19,61,23,57),(20,62,24,58),(33,152,37,148),(34,145,38,149),(35,146,39,150),(36,147,40,151),(41,73,45,77),(42,74,46,78),(43,75,47,79),(44,76,48,80),(49,159,53,155),(50,160,54,156),(51,153,55,157),(52,154,56,158),(65,119,69,115),(66,120,70,116),(67,113,71,117),(68,114,72,118),(81,144,85,140),(82,137,86,141),(83,138,87,142),(84,139,88,143),(89,128,93,124),(90,121,94,125),(91,122,95,126),(92,123,96,127),(105,129,109,133),(106,130,110,134),(107,131,111,135),(108,132,112,136)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,55,28,155),(2,50,29,158),(3,53,30,153),(4,56,31,156),(5,51,32,159),(6,54,25,154),(7,49,26,157),(8,52,27,160),(9,63,102,23),(10,58,103,18),(11,61,104,21),(12,64,97,24),(13,59,98,19),(14,62,99,22),(15,57,100,17),(16,60,101,20),(33,86,150,139),(34,81,151,142),(35,84,152,137),(36,87,145,140),(37,82,146,143),(38,85,147,138),(39,88,148,141),(40,83,149,144),(41,109,79,131),(42,112,80,134),(43,107,73,129),(44,110,74,132),(45,105,75,135),(46,108,76,130),(47,111,77,133),(48,106,78,136),(65,124,117,95),(66,127,118,90),(67,122,119,93),(68,125,120,96),(69,128,113,91),(70,123,114,94),(71,126,115,89),(72,121,116,92)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A8B8C8D8E8F8G8H10A···10F20A20B20C20D20E···20L40A···40H
order12222222444444444444558888888810···102020202020···2040···40
size11115555224444101020202020222222101010102···244448···84···4

56 irreducible representations

dim111111122222222444
type++++++-+++++-+
imageC1C2C2C2C2C2C4Q8D4D4D5SD16D10D10C4×D5Q8×D5D4×D5D5×SD16
kernelD5×C4.Q8C20.Q8C406C4C5×C4.Q8D5×C4⋊C4D5×C2×C8C8×D5C4×D5C2×Dic5C22×D5C4.Q8D10C4⋊C4C2×C8C8C4C22C2
# reps121121821128428228

Matrix representation of D5×C4.Q8 in GL4(𝔽41) generated by

7100
334000
0010
0001
,
404000
0100
00400
00040
,
40000
04000
00137
002140
,
40000
04000
00019
001330
,
32000
03200
003327
00258
G:=sub<GL(4,GF(41))| [7,33,0,0,1,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,40,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,1,21,0,0,37,40],[40,0,0,0,0,40,0,0,0,0,0,13,0,0,19,30],[32,0,0,0,0,32,0,0,0,0,33,25,0,0,27,8] >;

D5×C4.Q8 in GAP, Magma, Sage, TeX

D_5\times C_4.Q_8
% in TeX

G:=Group("D5xC4.Q8");
// GroupNames label

G:=SmallGroup(320,486);
// by ID

G=gap.SmallGroup(320,486);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,555,58,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^4=1,d^4=c^2,e^2=c^-1*d^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽