extension | φ:Q→Out N | d | ρ | Label | ID |
(D5xC2xC8).1C2 = D5xC8.C4 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | 4 | (D5xC2xC8).1C2 | 320,519 |
(D5xC2xC8).2C2 = D5xC2.D8 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).2C2 | 320,506 |
(D5xC2xC8).3C2 = C8.27(C4xD5) | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).3C2 | 320,507 |
(D5xC2xC8).4C2 = D10:2Q16 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).4C2 | 320,514 |
(D5xC2xC8).5C2 = D10:3Q16 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).5C2 | 320,815 |
(D5xC2xC8).6C2 = C2xD5xQ16 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).6C2 | 320,1435 |
(D5xC2xC8).7C2 = D5xC4.Q8 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).7C2 | 320,486 |
(D5xC2xC8).8C2 = (C8xD5):C4 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).8C2 | 320,487 |
(D5xC2xC8).9C2 = D10:1C16 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).9C2 | 320,65 |
(D5xC2xC8).10C2 = D10:C16 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).10C2 | 320,225 |
(D5xC2xC8).11C2 = D10.3M4(2) | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | | (D5xC2xC8).11C2 | 320,230 |
(D5xC2xC8).12C2 = D10.10D8 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | | (D5xC2xC8).12C2 | 320,231 |
(D5xC2xC8).13C2 = C20.10C42 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).13C2 | 320,234 |
(D5xC2xC8).14C2 = D10.5C42 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).14C2 | 320,316 |
(D5xC2xC8).15C2 = D5xQ8:C4 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).15C2 | 320,428 |
(D5xC2xC8).16C2 = D10:Q16 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).16C2 | 320,440 |
(D5xC2xC8).17C2 = D5xC4:C8 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).17C2 | 320,459 |
(D5xC2xC8).18C2 = C42.30D10 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).18C2 | 320,466 |
(D5xC2xC8).19C2 = C2xC80:C2 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).19C2 | 320,527 |
(D5xC2xC8).20C2 = C2xD5.D8 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | | (D5xC2xC8).20C2 | 320,1058 |
(D5xC2xC8).21C2 = C2xD10.Q8 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).21C2 | 320,1061 |
(D5xC2xC8).22C2 = (C2xC8):6F5 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | 4 | (D5xC2xC8).22C2 | 320,1059 |
(D5xC2xC8).23C2 = (C8xD5).C4 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | 4 | (D5xC2xC8).23C2 | 320,1062 |
(D5xC2xC8).24C2 = C2xC40:C4 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | | (D5xC2xC8).24C2 | 320,1057 |
(D5xC2xC8).25C2 = C2xC40.C4 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).25C2 | 320,1060 |
(D5xC2xC8).26C2 = D5xC8:C4 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).26C2 | 320,331 |
(D5xC2xC8).27C2 = D10.7C42 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).27C2 | 320,335 |
(D5xC2xC8).28C2 = D5xM5(2) | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | 4 | (D5xC2xC8).28C2 | 320,533 |
(D5xC2xC8).29C2 = C2xD5:C16 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).29C2 | 320,1051 |
(D5xC2xC8).30C2 = C2xC8.F5 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 160 | | (D5xC2xC8).30C2 | 320,1052 |
(D5xC2xC8).31C2 = D5:M5(2) | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | 4 | (D5xC2xC8).31C2 | 320,1053 |
(D5xC2xC8).32C2 = C2xC8xF5 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | | (D5xC2xC8).32C2 | 320,1054 |
(D5xC2xC8).33C2 = C2xC8:F5 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | | (D5xC2xC8).33C2 | 320,1055 |
(D5xC2xC8).34C2 = C20.12C42 | φ: C2/C1 → C2 ⊆ Out D5xC2xC8 | 80 | 4 | (D5xC2xC8).34C2 | 320,1056 |
(D5xC2xC8).35C2 = D5xC4xC8 | φ: trivial image | 160 | | (D5xC2xC8).35C2 | 320,311 |
(D5xC2xC8).36C2 = D5xC2xC16 | φ: trivial image | 160 | | (D5xC2xC8).36C2 | 320,526 |