Copied to
clipboard

G = (C2×C20)⋊17D4order 320 = 26·5

13rd semidirect product of C2×C20 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C20)⋊17D4, C20⋊D433C2, C20.454(C2×D4), Dic54(C4○D4), (C2×D4).237D10, (C2×Q8).194D10, Dic5⋊D447C2, Dic5⋊Q834C2, C20.17D433C2, C20.23D434C2, (C2×C10).318C24, (C2×C20).889C23, (C22×C4).288D10, C10.168(C22×D4), (D4×C10).277C22, (C2×D20).290C22, C57(C22.26C24), (Q8×C10).244C22, C22.327(C23×D5), C23.139(C22×D5), (C22×C20).297C22, (C22×C10).244C23, (C2×Dic5).304C23, (C4×Dic5).292C22, (C22×D5).139C23, C23.D5.137C22, D10⋊C4.160C22, (C2×Dic10).319C22, C10.D4.172C22, (C22×Dic5).260C22, (C2×C4○D4)⋊10D5, (C4×C5⋊D4)⋊61C2, (C2×C4×Dic5)⋊15C2, (C2×C4○D20)⋊32C2, (C10×C4○D4)⋊10C2, (C2×C4)⋊11(C5⋊D4), C2.106(D5×C4○D4), (C2×C10).83(C2×D4), C4.146(C2×C5⋊D4), C22.1(C2×C5⋊D4), C10.218(C2×C4○D4), (C2×C4×D5).272C22, C2.41(C22×C5⋊D4), (C2×C4).832(C22×D5), (C2×C5⋊D4).150C22, SmallGroup(320,1504)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×C20)⋊17D4
C1C5C10C2×C10C22×D5C2×C4×D5C2×C4○D20 — (C2×C20)⋊17D4
C5C2×C10 — (C2×C20)⋊17D4
C1C2×C4C2×C4○D4

Generators and relations for (C2×C20)⋊17D4
 G = < a,b,c,d | a2=b20=c4=d2=1, ab=ba, ac=ca, dad=ab10, cbc-1=dbd=b9, dcd=c-1 >

Subgroups: 1022 in 310 conjugacy classes, 115 normal (31 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D5, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C2×C42, C4×D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C2×C4○D4, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, C22×C10, C22.26C24, C4×Dic5, C4×Dic5, C10.D4, D10⋊C4, C23.D5, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C22×Dic5, C2×C5⋊D4, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, C5×C4○D4, C2×C4×Dic5, C4×C5⋊D4, C20.17D4, Dic5⋊D4, C20⋊D4, Dic5⋊Q8, C20.23D4, C2×C4○D20, C10×C4○D4, (C2×C20)⋊17D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, C5⋊D4, C22×D5, C22.26C24, C2×C5⋊D4, C23×D5, D5×C4○D4, C22×C5⋊D4, (C2×C20)⋊17D4

Smallest permutation representation of (C2×C20)⋊17D4
On 160 points
Generators in S160
(1 70)(2 71)(3 72)(4 73)(5 74)(6 75)(7 76)(8 77)(9 78)(10 79)(11 80)(12 61)(13 62)(14 63)(15 64)(16 65)(17 66)(18 67)(19 68)(20 69)(21 43)(22 44)(23 45)(24 46)(25 47)(26 48)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 55)(34 56)(35 57)(36 58)(37 59)(38 60)(39 41)(40 42)(81 126)(82 127)(83 128)(84 129)(85 130)(86 131)(87 132)(88 133)(89 134)(90 135)(91 136)(92 137)(93 138)(94 139)(95 140)(96 121)(97 122)(98 123)(99 124)(100 125)(101 153)(102 154)(103 155)(104 156)(105 157)(106 158)(107 159)(108 160)(109 141)(110 142)(111 143)(112 144)(113 145)(114 146)(115 147)(116 148)(117 149)(118 150)(119 151)(120 152)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 43 137 102)(2 52 138 111)(3 41 139 120)(4 50 140 109)(5 59 121 118)(6 48 122 107)(7 57 123 116)(8 46 124 105)(9 55 125 114)(10 44 126 103)(11 53 127 112)(12 42 128 101)(13 51 129 110)(14 60 130 119)(15 49 131 108)(16 58 132 117)(17 47 133 106)(18 56 134 115)(19 45 135 104)(20 54 136 113)(21 92 154 70)(22 81 155 79)(23 90 156 68)(24 99 157 77)(25 88 158 66)(26 97 159 75)(27 86 160 64)(28 95 141 73)(29 84 142 62)(30 93 143 71)(31 82 144 80)(32 91 145 69)(33 100 146 78)(34 89 147 67)(35 98 148 76)(36 87 149 65)(37 96 150 74)(38 85 151 63)(39 94 152 72)(40 83 153 61)
(2 10)(3 19)(4 8)(5 17)(7 15)(9 13)(12 20)(14 18)(21 144)(22 153)(23 142)(24 151)(25 160)(26 149)(27 158)(28 147)(29 156)(30 145)(31 154)(32 143)(33 152)(34 141)(35 150)(36 159)(37 148)(38 157)(39 146)(40 155)(41 104)(42 113)(43 102)(44 111)(45 120)(46 109)(47 118)(48 107)(49 116)(50 105)(51 114)(52 103)(53 112)(54 101)(55 110)(56 119)(57 108)(58 117)(59 106)(60 115)(61 79)(62 68)(63 77)(64 66)(65 75)(67 73)(69 71)(70 80)(72 78)(74 76)(81 83)(82 92)(84 90)(85 99)(86 88)(87 97)(89 95)(91 93)(94 100)(96 98)(121 133)(123 131)(124 140)(125 129)(126 138)(128 136)(130 134)(135 139)

G:=sub<Sym(160)| (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,43)(22,44)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,41)(40,42)(81,126)(82,127)(83,128)(84,129)(85,130)(86,131)(87,132)(88,133)(89,134)(90,135)(91,136)(92,137)(93,138)(94,139)(95,140)(96,121)(97,122)(98,123)(99,124)(100,125)(101,153)(102,154)(103,155)(104,156)(105,157)(106,158)(107,159)(108,160)(109,141)(110,142)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,151)(120,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,43,137,102)(2,52,138,111)(3,41,139,120)(4,50,140,109)(5,59,121,118)(6,48,122,107)(7,57,123,116)(8,46,124,105)(9,55,125,114)(10,44,126,103)(11,53,127,112)(12,42,128,101)(13,51,129,110)(14,60,130,119)(15,49,131,108)(16,58,132,117)(17,47,133,106)(18,56,134,115)(19,45,135,104)(20,54,136,113)(21,92,154,70)(22,81,155,79)(23,90,156,68)(24,99,157,77)(25,88,158,66)(26,97,159,75)(27,86,160,64)(28,95,141,73)(29,84,142,62)(30,93,143,71)(31,82,144,80)(32,91,145,69)(33,100,146,78)(34,89,147,67)(35,98,148,76)(36,87,149,65)(37,96,150,74)(38,85,151,63)(39,94,152,72)(40,83,153,61), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,144)(22,153)(23,142)(24,151)(25,160)(26,149)(27,158)(28,147)(29,156)(30,145)(31,154)(32,143)(33,152)(34,141)(35,150)(36,159)(37,148)(38,157)(39,146)(40,155)(41,104)(42,113)(43,102)(44,111)(45,120)(46,109)(47,118)(48,107)(49,116)(50,105)(51,114)(52,103)(53,112)(54,101)(55,110)(56,119)(57,108)(58,117)(59,106)(60,115)(61,79)(62,68)(63,77)(64,66)(65,75)(67,73)(69,71)(70,80)(72,78)(74,76)(81,83)(82,92)(84,90)(85,99)(86,88)(87,97)(89,95)(91,93)(94,100)(96,98)(121,133)(123,131)(124,140)(125,129)(126,138)(128,136)(130,134)(135,139)>;

G:=Group( (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,43)(22,44)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,41)(40,42)(81,126)(82,127)(83,128)(84,129)(85,130)(86,131)(87,132)(88,133)(89,134)(90,135)(91,136)(92,137)(93,138)(94,139)(95,140)(96,121)(97,122)(98,123)(99,124)(100,125)(101,153)(102,154)(103,155)(104,156)(105,157)(106,158)(107,159)(108,160)(109,141)(110,142)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,151)(120,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,43,137,102)(2,52,138,111)(3,41,139,120)(4,50,140,109)(5,59,121,118)(6,48,122,107)(7,57,123,116)(8,46,124,105)(9,55,125,114)(10,44,126,103)(11,53,127,112)(12,42,128,101)(13,51,129,110)(14,60,130,119)(15,49,131,108)(16,58,132,117)(17,47,133,106)(18,56,134,115)(19,45,135,104)(20,54,136,113)(21,92,154,70)(22,81,155,79)(23,90,156,68)(24,99,157,77)(25,88,158,66)(26,97,159,75)(27,86,160,64)(28,95,141,73)(29,84,142,62)(30,93,143,71)(31,82,144,80)(32,91,145,69)(33,100,146,78)(34,89,147,67)(35,98,148,76)(36,87,149,65)(37,96,150,74)(38,85,151,63)(39,94,152,72)(40,83,153,61), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,144)(22,153)(23,142)(24,151)(25,160)(26,149)(27,158)(28,147)(29,156)(30,145)(31,154)(32,143)(33,152)(34,141)(35,150)(36,159)(37,148)(38,157)(39,146)(40,155)(41,104)(42,113)(43,102)(44,111)(45,120)(46,109)(47,118)(48,107)(49,116)(50,105)(51,114)(52,103)(53,112)(54,101)(55,110)(56,119)(57,108)(58,117)(59,106)(60,115)(61,79)(62,68)(63,77)(64,66)(65,75)(67,73)(69,71)(70,80)(72,78)(74,76)(81,83)(82,92)(84,90)(85,99)(86,88)(87,97)(89,95)(91,93)(94,100)(96,98)(121,133)(123,131)(124,140)(125,129)(126,138)(128,136)(130,134)(135,139) );

G=PermutationGroup([[(1,70),(2,71),(3,72),(4,73),(5,74),(6,75),(7,76),(8,77),(9,78),(10,79),(11,80),(12,61),(13,62),(14,63),(15,64),(16,65),(17,66),(18,67),(19,68),(20,69),(21,43),(22,44),(23,45),(24,46),(25,47),(26,48),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,55),(34,56),(35,57),(36,58),(37,59),(38,60),(39,41),(40,42),(81,126),(82,127),(83,128),(84,129),(85,130),(86,131),(87,132),(88,133),(89,134),(90,135),(91,136),(92,137),(93,138),(94,139),(95,140),(96,121),(97,122),(98,123),(99,124),(100,125),(101,153),(102,154),(103,155),(104,156),(105,157),(106,158),(107,159),(108,160),(109,141),(110,142),(111,143),(112,144),(113,145),(114,146),(115,147),(116,148),(117,149),(118,150),(119,151),(120,152)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,43,137,102),(2,52,138,111),(3,41,139,120),(4,50,140,109),(5,59,121,118),(6,48,122,107),(7,57,123,116),(8,46,124,105),(9,55,125,114),(10,44,126,103),(11,53,127,112),(12,42,128,101),(13,51,129,110),(14,60,130,119),(15,49,131,108),(16,58,132,117),(17,47,133,106),(18,56,134,115),(19,45,135,104),(20,54,136,113),(21,92,154,70),(22,81,155,79),(23,90,156,68),(24,99,157,77),(25,88,158,66),(26,97,159,75),(27,86,160,64),(28,95,141,73),(29,84,142,62),(30,93,143,71),(31,82,144,80),(32,91,145,69),(33,100,146,78),(34,89,147,67),(35,98,148,76),(36,87,149,65),(37,96,150,74),(38,85,151,63),(39,94,152,72),(40,83,153,61)], [(2,10),(3,19),(4,8),(5,17),(7,15),(9,13),(12,20),(14,18),(21,144),(22,153),(23,142),(24,151),(25,160),(26,149),(27,158),(28,147),(29,156),(30,145),(31,154),(32,143),(33,152),(34,141),(35,150),(36,159),(37,148),(38,157),(39,146),(40,155),(41,104),(42,113),(43,102),(44,111),(45,120),(46,109),(47,118),(48,107),(49,116),(50,105),(51,114),(52,103),(53,112),(54,101),(55,110),(56,119),(57,108),(58,117),(59,106),(60,115),(61,79),(62,68),(63,77),(64,66),(65,75),(67,73),(69,71),(70,80),(72,78),(74,76),(81,83),(82,92),(84,90),(85,99),(86,88),(87,97),(89,95),(91,93),(94,100),(96,98),(121,133),(123,131),(124,140),(125,129),(126,138),(128,136),(130,134),(135,139)]])

68 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I···4P4Q4R5A5B10A···10F10G···10R20A···20H20I···20T
order1222222222444444444···4445510···1010···1020···2020···20
size1111224420201111224410···102020222···24···42···24···4

68 irreducible representations

dim111111111122222224
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10C5⋊D4D5×C4○D4
kernel(C2×C20)⋊17D4C2×C4×Dic5C4×C5⋊D4C20.17D4Dic5⋊D4C20⋊D4Dic5⋊Q8C20.23D4C2×C4○D20C10×C4○D4C2×C20C2×C4○D4Dic5C22×C4C2×D4C2×Q8C2×C4C2
# reps1141411111428662168

Matrix representation of (C2×C20)⋊17D4 in GL6(𝔽41)

100000
010000
009200
0013200
000010
000001
,
610000
510000
0032000
0003200
0000400
0000040
,
610000
6350000
001000
000100
0000040
000010
,
610000
6350000
001000
00324000
000010
0000040

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,1,0,0,0,0,2,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,5,0,0,0,0,1,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[6,6,0,0,0,0,1,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[6,6,0,0,0,0,1,35,0,0,0,0,0,0,1,32,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;

(C2×C20)⋊17D4 in GAP, Magma, Sage, TeX

(C_2\times C_{20})\rtimes_{17}D_4
% in TeX

G:=Group("(C2xC20):17D4");
// GroupNames label

G:=SmallGroup(320,1504);
// by ID

G=gap.SmallGroup(320,1504);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,675,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a*b^10,c*b*c^-1=d*b*d=b^9,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽