Copied to
clipboard

G = C10.102+ 1+4order 320 = 26·5

10th non-split extension by C10 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.102+ 1+4, C5⋊D44Q8, C20⋊Q810C2, C51(D43Q8), C4⋊C4.264D10, D102Q89C2, D10⋊Q82C2, C22.8(Q8×D5), D10.19(C2×Q8), Dic53Q89C2, C4.92(C4○D20), (C2×C10).55C24, Dic5.20(C2×Q8), C20.194(C4○D4), C20.48D418C2, C10.26(C22×Q8), (C2×C20).138C23, Dic5.Q81C2, (C22×C4).180D10, C2.13(D46D10), C22.89(C23×D5), C4⋊Dic5.192C22, C23.227(C22×D5), C23.D5.88C22, D10⋊C4.94C22, (C22×C10).404C23, (C22×C20).103C22, (C4×Dic5).212C22, (C2×Dic5).201C23, (C22×D5).170C23, (C2×Dic10).147C22, C10.D4.149C22, C2.9(C2×Q8×D5), (D5×C4⋊C4)⋊10C2, (C2×C4⋊C4)⋊20D5, (C10×C4⋊C4)⋊17C2, (C4×C5⋊D4).3C2, C10.22(C2×C4○D4), C2.24(C2×C4○D20), (C2×C10).95(C2×Q8), (C2×C4×D5).242C22, (C5×C4⋊C4).297C22, (C2×C4).573(C22×D5), (C2×C5⋊D4).159C22, SmallGroup(320,1183)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.102+ 1+4
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — C10.102+ 1+4
C5C2×C10 — C10.102+ 1+4
C1C22C2×C4⋊C4

Generators and relations for C10.102+ 1+4
 G = < a,b,c,d,e | a10=b4=c2=1, d2=b2, e2=a5, bab-1=a-1, ac=ca, ad=da, ae=ea, cbc=a5b-1, dbd-1=a5b, be=eb, cd=dc, ce=ec, ede-1=b2d >

Subgroups: 726 in 228 conjugacy classes, 107 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C4×Q8, C22⋊Q8, C42.C2, C4⋊Q8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C22×D5, C22×C10, D43Q8, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, D10⋊C4, C23.D5, C23.D5, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×C5⋊D4, C22×C20, C22×C20, Dic53Q8, C20⋊Q8, Dic5.Q8, D5×C4⋊C4, D10⋊Q8, D102Q8, C20.48D4, C20.48D4, C4×C5⋊D4, C4×C5⋊D4, C10×C4⋊C4, C10.102+ 1+4
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C4○D4, C24, D10, C22×Q8, C2×C4○D4, 2+ 1+4, C22×D5, D43Q8, C4○D20, Q8×D5, C23×D5, C2×C4○D20, D46D10, C2×Q8×D5, C10.102+ 1+4

Smallest permutation representation of C10.102+ 1+4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 11 30 157)(2 20 21 156)(3 19 22 155)(4 18 23 154)(5 17 24 153)(6 16 25 152)(7 15 26 151)(8 14 27 160)(9 13 28 159)(10 12 29 158)(31 133 49 141)(32 132 50 150)(33 131 41 149)(34 140 42 148)(35 139 43 147)(36 138 44 146)(37 137 45 145)(38 136 46 144)(39 135 47 143)(40 134 48 142)(51 121 69 113)(52 130 70 112)(53 129 61 111)(54 128 62 120)(55 127 63 119)(56 126 64 118)(57 125 65 117)(58 124 66 116)(59 123 67 115)(60 122 68 114)(71 98 89 106)(72 97 90 105)(73 96 81 104)(74 95 82 103)(75 94 83 102)(76 93 84 101)(77 92 85 110)(78 91 86 109)(79 100 87 108)(80 99 88 107)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 31)(11 145)(12 146)(13 147)(14 148)(15 149)(16 150)(17 141)(18 142)(19 143)(20 144)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 130 30 112)(2 121 21 113)(3 122 22 114)(4 123 23 115)(5 124 24 116)(6 125 25 117)(7 126 26 118)(8 127 27 119)(9 128 28 120)(10 129 29 111)(11 65 157 57)(12 66 158 58)(13 67 159 59)(14 68 160 60)(15 69 151 51)(16 70 152 52)(17 61 153 53)(18 62 154 54)(19 63 155 55)(20 64 156 56)(31 109 49 91)(32 110 50 92)(33 101 41 93)(34 102 42 94)(35 103 43 95)(36 104 44 96)(37 105 45 97)(38 106 46 98)(39 107 47 99)(40 108 48 100)(71 149 89 131)(72 150 90 132)(73 141 81 133)(74 142 82 134)(75 143 83 135)(76 144 84 136)(77 145 85 137)(78 146 86 138)(79 147 87 139)(80 148 88 140)
(1 145 6 150)(2 146 7 141)(3 147 8 142)(4 148 9 143)(5 149 10 144)(11 37 16 32)(12 38 17 33)(13 39 18 34)(14 40 19 35)(15 31 20 36)(21 138 26 133)(22 139 27 134)(23 140 28 135)(24 131 29 136)(25 132 30 137)(41 158 46 153)(42 159 47 154)(43 160 48 155)(44 151 49 156)(45 152 50 157)(51 109 56 104)(52 110 57 105)(53 101 58 106)(54 102 59 107)(55 103 60 108)(61 93 66 98)(62 94 67 99)(63 95 68 100)(64 96 69 91)(65 97 70 92)(71 129 76 124)(72 130 77 125)(73 121 78 126)(74 122 79 127)(75 123 80 128)(81 113 86 118)(82 114 87 119)(83 115 88 120)(84 116 89 111)(85 117 90 112)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,11,30,157)(2,20,21,156)(3,19,22,155)(4,18,23,154)(5,17,24,153)(6,16,25,152)(7,15,26,151)(8,14,27,160)(9,13,28,159)(10,12,29,158)(31,133,49,141)(32,132,50,150)(33,131,41,149)(34,140,42,148)(35,139,43,147)(36,138,44,146)(37,137,45,145)(38,136,46,144)(39,135,47,143)(40,134,48,142)(51,121,69,113)(52,130,70,112)(53,129,61,111)(54,128,62,120)(55,127,63,119)(56,126,64,118)(57,125,65,117)(58,124,66,116)(59,123,67,115)(60,122,68,114)(71,98,89,106)(72,97,90,105)(73,96,81,104)(74,95,82,103)(75,94,83,102)(76,93,84,101)(77,92,85,110)(78,91,86,109)(79,100,87,108)(80,99,88,107), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,31)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,141)(18,142)(19,143)(20,144)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,130,30,112)(2,121,21,113)(3,122,22,114)(4,123,23,115)(5,124,24,116)(6,125,25,117)(7,126,26,118)(8,127,27,119)(9,128,28,120)(10,129,29,111)(11,65,157,57)(12,66,158,58)(13,67,159,59)(14,68,160,60)(15,69,151,51)(16,70,152,52)(17,61,153,53)(18,62,154,54)(19,63,155,55)(20,64,156,56)(31,109,49,91)(32,110,50,92)(33,101,41,93)(34,102,42,94)(35,103,43,95)(36,104,44,96)(37,105,45,97)(38,106,46,98)(39,107,47,99)(40,108,48,100)(71,149,89,131)(72,150,90,132)(73,141,81,133)(74,142,82,134)(75,143,83,135)(76,144,84,136)(77,145,85,137)(78,146,86,138)(79,147,87,139)(80,148,88,140), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,37,16,32)(12,38,17,33)(13,39,18,34)(14,40,19,35)(15,31,20,36)(21,138,26,133)(22,139,27,134)(23,140,28,135)(24,131,29,136)(25,132,30,137)(41,158,46,153)(42,159,47,154)(43,160,48,155)(44,151,49,156)(45,152,50,157)(51,109,56,104)(52,110,57,105)(53,101,58,106)(54,102,59,107)(55,103,60,108)(61,93,66,98)(62,94,67,99)(63,95,68,100)(64,96,69,91)(65,97,70,92)(71,129,76,124)(72,130,77,125)(73,121,78,126)(74,122,79,127)(75,123,80,128)(81,113,86,118)(82,114,87,119)(83,115,88,120)(84,116,89,111)(85,117,90,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,11,30,157)(2,20,21,156)(3,19,22,155)(4,18,23,154)(5,17,24,153)(6,16,25,152)(7,15,26,151)(8,14,27,160)(9,13,28,159)(10,12,29,158)(31,133,49,141)(32,132,50,150)(33,131,41,149)(34,140,42,148)(35,139,43,147)(36,138,44,146)(37,137,45,145)(38,136,46,144)(39,135,47,143)(40,134,48,142)(51,121,69,113)(52,130,70,112)(53,129,61,111)(54,128,62,120)(55,127,63,119)(56,126,64,118)(57,125,65,117)(58,124,66,116)(59,123,67,115)(60,122,68,114)(71,98,89,106)(72,97,90,105)(73,96,81,104)(74,95,82,103)(75,94,83,102)(76,93,84,101)(77,92,85,110)(78,91,86,109)(79,100,87,108)(80,99,88,107), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,31)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,141)(18,142)(19,143)(20,144)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,130,30,112)(2,121,21,113)(3,122,22,114)(4,123,23,115)(5,124,24,116)(6,125,25,117)(7,126,26,118)(8,127,27,119)(9,128,28,120)(10,129,29,111)(11,65,157,57)(12,66,158,58)(13,67,159,59)(14,68,160,60)(15,69,151,51)(16,70,152,52)(17,61,153,53)(18,62,154,54)(19,63,155,55)(20,64,156,56)(31,109,49,91)(32,110,50,92)(33,101,41,93)(34,102,42,94)(35,103,43,95)(36,104,44,96)(37,105,45,97)(38,106,46,98)(39,107,47,99)(40,108,48,100)(71,149,89,131)(72,150,90,132)(73,141,81,133)(74,142,82,134)(75,143,83,135)(76,144,84,136)(77,145,85,137)(78,146,86,138)(79,147,87,139)(80,148,88,140), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,37,16,32)(12,38,17,33)(13,39,18,34)(14,40,19,35)(15,31,20,36)(21,138,26,133)(22,139,27,134)(23,140,28,135)(24,131,29,136)(25,132,30,137)(41,158,46,153)(42,159,47,154)(43,160,48,155)(44,151,49,156)(45,152,50,157)(51,109,56,104)(52,110,57,105)(53,101,58,106)(54,102,59,107)(55,103,60,108)(61,93,66,98)(62,94,67,99)(63,95,68,100)(64,96,69,91)(65,97,70,92)(71,129,76,124)(72,130,77,125)(73,121,78,126)(74,122,79,127)(75,123,80,128)(81,113,86,118)(82,114,87,119)(83,115,88,120)(84,116,89,111)(85,117,90,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,11,30,157),(2,20,21,156),(3,19,22,155),(4,18,23,154),(5,17,24,153),(6,16,25,152),(7,15,26,151),(8,14,27,160),(9,13,28,159),(10,12,29,158),(31,133,49,141),(32,132,50,150),(33,131,41,149),(34,140,42,148),(35,139,43,147),(36,138,44,146),(37,137,45,145),(38,136,46,144),(39,135,47,143),(40,134,48,142),(51,121,69,113),(52,130,70,112),(53,129,61,111),(54,128,62,120),(55,127,63,119),(56,126,64,118),(57,125,65,117),(58,124,66,116),(59,123,67,115),(60,122,68,114),(71,98,89,106),(72,97,90,105),(73,96,81,104),(74,95,82,103),(75,94,83,102),(76,93,84,101),(77,92,85,110),(78,91,86,109),(79,100,87,108),(80,99,88,107)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,31),(11,145),(12,146),(13,147),(14,148),(15,149),(16,150),(17,141),(18,142),(19,143),(20,144),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,130,30,112),(2,121,21,113),(3,122,22,114),(4,123,23,115),(5,124,24,116),(6,125,25,117),(7,126,26,118),(8,127,27,119),(9,128,28,120),(10,129,29,111),(11,65,157,57),(12,66,158,58),(13,67,159,59),(14,68,160,60),(15,69,151,51),(16,70,152,52),(17,61,153,53),(18,62,154,54),(19,63,155,55),(20,64,156,56),(31,109,49,91),(32,110,50,92),(33,101,41,93),(34,102,42,94),(35,103,43,95),(36,104,44,96),(37,105,45,97),(38,106,46,98),(39,107,47,99),(40,108,48,100),(71,149,89,131),(72,150,90,132),(73,141,81,133),(74,142,82,134),(75,143,83,135),(76,144,84,136),(77,145,85,137),(78,146,86,138),(79,147,87,139),(80,148,88,140)], [(1,145,6,150),(2,146,7,141),(3,147,8,142),(4,148,9,143),(5,149,10,144),(11,37,16,32),(12,38,17,33),(13,39,18,34),(14,40,19,35),(15,31,20,36),(21,138,26,133),(22,139,27,134),(23,140,28,135),(24,131,29,136),(25,132,30,137),(41,158,46,153),(42,159,47,154),(43,160,48,155),(44,151,49,156),(45,152,50,157),(51,109,56,104),(52,110,57,105),(53,101,58,106),(54,102,59,107),(55,103,60,108),(61,93,66,98),(62,94,67,99),(63,95,68,100),(64,96,69,91),(65,97,70,92),(71,129,76,124),(72,130,77,125),(73,121,78,126),(74,122,79,127),(75,123,80,128),(81,113,86,118),(82,114,87,119),(83,115,88,120),(84,116,89,111),(85,117,90,112)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G4H4I4J4K4L···4Q5A5B10A···10N20A···20X
order122222224···4444444···45510···1020···20
size11112210102···2444101020···20222···24···4

65 irreducible representations

dim1111111111222222444
type++++++++++-++++-
imageC1C2C2C2C2C2C2C2C2C2Q8D5C4○D4D10D10C4○D202+ 1+4Q8×D5D46D10
kernelC10.102+ 1+4Dic53Q8C20⋊Q8Dic5.Q8D5×C4⋊C4D10⋊Q8D102Q8C20.48D4C4×C5⋊D4C10×C4⋊C4C5⋊D4C2×C4⋊C4C20C4⋊C4C22×C4C4C10C22C2
# reps11121213314248616144

Matrix representation of C10.102+ 1+4 in GL6(𝔽41)

4000000
0400000
00403500
0063500
0000400
0000040
,
910000
2320000
0035600
001600
0000321
00002138
,
4090000
010000
001000
000100
0000400
0000040
,
1320000
0400000
001000
000100
00002138
00003820
,
900000
090000
0040000
0004000
00003820
0000203

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,6,0,0,0,0,35,35,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,2,0,0,0,0,1,32,0,0,0,0,0,0,35,1,0,0,0,0,6,6,0,0,0,0,0,0,3,21,0,0,0,0,21,38],[40,0,0,0,0,0,9,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,32,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,21,38,0,0,0,0,38,20],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,38,20,0,0,0,0,20,3] >;

C10.102+ 1+4 in GAP, Magma, Sage, TeX

C_{10}._{10}2_+^{1+4}
% in TeX

G:=Group("C10.10ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1183);
// by ID

G=gap.SmallGroup(320,1183);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,100,1571,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=b^2,e^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=a^5*b^-1,d*b*d^-1=a^5*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽