Copied to
clipboard

G = C10.2+ 1+4order 320 = 26·5

9th non-split extension by C10 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.42- 1+4, C10.92+ 1+4, (C2×C4)⋊4D20, (C2×C20)⋊9D4, C4⋊D209C2, C207D45C2, C4.69(C2×D20), C4⋊C4.263D10, D102Q88C2, C20.222(C2×D4), C22.7(C2×D20), (C2×C10).54C24, C10.11(C22×D4), C2.13(C22×D20), (C2×C20).137C23, (C22×C4).179D10, C4⋊Dic5.29C22, C2.12(D46D10), C22.88(C23×D5), D10⋊C4.1C22, (C2×D20).262C22, (C22×C20).75C22, (C2×Dic5).16C23, (C22×D5).13C23, C23.226(C22×D5), (C22×C10).403C23, C2.7(Q8.10D10), C51(C22.31C24), (C2×Dic10).290C22, (C2×C4⋊C4)⋊19D5, (C10×C4⋊C4)⋊16C2, (C2×C4○D20)⋊16C2, (C2×C4×D5).64C22, (C2×C10).176(C2×D4), (C5×C4⋊C4).296C22, (C2×C4).572(C22×D5), (C2×C5⋊D4).101C22, SmallGroup(320,1182)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.2+ 1+4
C1C5C10C2×C10C22×D5C2×C4×D5C2×C4○D20 — C10.2+ 1+4
C5C2×C10 — C10.2+ 1+4
C1C22C2×C4⋊C4

Generators and relations for C10.2+ 1+4
 G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=b2, bab-1=dad-1=eae=a-1, ac=ca, cbc-1=a5b-1, dbd-1=a5b, be=eb, dcd-1=ece=a5c, ede=a5b2d >

Subgroups: 1182 in 294 conjugacy classes, 111 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C4⋊D4, C22⋊Q8, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C22.31C24, C4⋊Dic5, D10⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, C22×C20, C4⋊D20, D102Q8, C207D4, C10×C4⋊C4, C2×C4○D20, C10.2+ 1+4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, 2+ 1+4, 2- 1+4, D20, C22×D5, C22.31C24, C2×D20, C23×D5, C22×D20, D46D10, Q8.10D10, C10.2+ 1+4

Smallest permutation representation of C10.2+ 1+4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 70 30 54)(2 69 21 53)(3 68 22 52)(4 67 23 51)(5 66 24 60)(6 65 25 59)(7 64 26 58)(8 63 27 57)(9 62 28 56)(10 61 29 55)(11 130 159 114)(12 129 160 113)(13 128 151 112)(14 127 152 111)(15 126 153 120)(16 125 154 119)(17 124 155 118)(18 123 156 117)(19 122 157 116)(20 121 158 115)(31 72 47 88)(32 71 48 87)(33 80 49 86)(34 79 50 85)(35 78 41 84)(36 77 42 83)(37 76 43 82)(38 75 44 81)(39 74 45 90)(40 73 46 89)(91 137 107 143)(92 136 108 142)(93 135 109 141)(94 134 110 150)(95 133 101 149)(96 132 102 148)(97 131 103 147)(98 140 104 146)(99 139 105 145)(100 138 106 144)
(1 39 6 34)(2 40 7 35)(3 31 8 36)(4 32 9 37)(5 33 10 38)(11 139 16 134)(12 140 17 135)(13 131 18 136)(14 132 19 137)(15 133 20 138)(21 46 26 41)(22 47 27 42)(23 48 28 43)(24 49 29 44)(25 50 30 45)(51 76 56 71)(52 77 57 72)(53 78 58 73)(54 79 59 74)(55 80 60 75)(61 86 66 81)(62 87 67 82)(63 88 68 83)(64 89 69 84)(65 90 70 85)(91 122 96 127)(92 123 97 128)(93 124 98 129)(94 125 99 130)(95 126 100 121)(101 120 106 115)(102 111 107 116)(103 112 108 117)(104 113 109 118)(105 114 110 119)(141 160 146 155)(142 151 147 156)(143 152 148 157)(144 153 149 158)(145 154 150 159)
(1 16 30 154)(2 15 21 153)(3 14 22 152)(4 13 23 151)(5 12 24 160)(6 11 25 159)(7 20 26 158)(8 19 27 157)(9 18 28 156)(10 17 29 155)(31 137 47 143)(32 136 48 142)(33 135 49 141)(34 134 50 150)(35 133 41 149)(36 132 42 148)(37 131 43 147)(38 140 44 146)(39 139 45 145)(40 138 46 144)(51 117 67 123)(52 116 68 122)(53 115 69 121)(54 114 70 130)(55 113 61 129)(56 112 62 128)(57 111 63 127)(58 120 64 126)(59 119 65 125)(60 118 66 124)(71 103 87 97)(72 102 88 96)(73 101 89 95)(74 110 90 94)(75 109 81 93)(76 108 82 92)(77 107 83 91)(78 106 84 100)(79 105 85 99)(80 104 86 98)
(1 110)(2 109)(3 108)(4 107)(5 106)(6 105)(7 104)(8 103)(9 102)(10 101)(11 74)(12 73)(13 72)(14 71)(15 80)(16 79)(17 78)(18 77)(19 76)(20 75)(21 93)(22 92)(23 91)(24 100)(25 99)(26 98)(27 97)(28 96)(29 95)(30 94)(31 112)(32 111)(33 120)(34 119)(35 118)(36 117)(37 116)(38 115)(39 114)(40 113)(41 124)(42 123)(43 122)(44 121)(45 130)(46 129)(47 128)(48 127)(49 126)(50 125)(51 137)(52 136)(53 135)(54 134)(55 133)(56 132)(57 131)(58 140)(59 139)(60 138)(61 149)(62 148)(63 147)(64 146)(65 145)(66 144)(67 143)(68 142)(69 141)(70 150)(81 158)(82 157)(83 156)(84 155)(85 154)(86 153)(87 152)(88 151)(89 160)(90 159)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,70,30,54)(2,69,21,53)(3,68,22,52)(4,67,23,51)(5,66,24,60)(6,65,25,59)(7,64,26,58)(8,63,27,57)(9,62,28,56)(10,61,29,55)(11,130,159,114)(12,129,160,113)(13,128,151,112)(14,127,152,111)(15,126,153,120)(16,125,154,119)(17,124,155,118)(18,123,156,117)(19,122,157,116)(20,121,158,115)(31,72,47,88)(32,71,48,87)(33,80,49,86)(34,79,50,85)(35,78,41,84)(36,77,42,83)(37,76,43,82)(38,75,44,81)(39,74,45,90)(40,73,46,89)(91,137,107,143)(92,136,108,142)(93,135,109,141)(94,134,110,150)(95,133,101,149)(96,132,102,148)(97,131,103,147)(98,140,104,146)(99,139,105,145)(100,138,106,144), (1,39,6,34)(2,40,7,35)(3,31,8,36)(4,32,9,37)(5,33,10,38)(11,139,16,134)(12,140,17,135)(13,131,18,136)(14,132,19,137)(15,133,20,138)(21,46,26,41)(22,47,27,42)(23,48,28,43)(24,49,29,44)(25,50,30,45)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75)(61,86,66,81)(62,87,67,82)(63,88,68,83)(64,89,69,84)(65,90,70,85)(91,122,96,127)(92,123,97,128)(93,124,98,129)(94,125,99,130)(95,126,100,121)(101,120,106,115)(102,111,107,116)(103,112,108,117)(104,113,109,118)(105,114,110,119)(141,160,146,155)(142,151,147,156)(143,152,148,157)(144,153,149,158)(145,154,150,159), (1,16,30,154)(2,15,21,153)(3,14,22,152)(4,13,23,151)(5,12,24,160)(6,11,25,159)(7,20,26,158)(8,19,27,157)(9,18,28,156)(10,17,29,155)(31,137,47,143)(32,136,48,142)(33,135,49,141)(34,134,50,150)(35,133,41,149)(36,132,42,148)(37,131,43,147)(38,140,44,146)(39,139,45,145)(40,138,46,144)(51,117,67,123)(52,116,68,122)(53,115,69,121)(54,114,70,130)(55,113,61,129)(56,112,62,128)(57,111,63,127)(58,120,64,126)(59,119,65,125)(60,118,66,124)(71,103,87,97)(72,102,88,96)(73,101,89,95)(74,110,90,94)(75,109,81,93)(76,108,82,92)(77,107,83,91)(78,106,84,100)(79,105,85,99)(80,104,86,98), (1,110)(2,109)(3,108)(4,107)(5,106)(6,105)(7,104)(8,103)(9,102)(10,101)(11,74)(12,73)(13,72)(14,71)(15,80)(16,79)(17,78)(18,77)(19,76)(20,75)(21,93)(22,92)(23,91)(24,100)(25,99)(26,98)(27,97)(28,96)(29,95)(30,94)(31,112)(32,111)(33,120)(34,119)(35,118)(36,117)(37,116)(38,115)(39,114)(40,113)(41,124)(42,123)(43,122)(44,121)(45,130)(46,129)(47,128)(48,127)(49,126)(50,125)(51,137)(52,136)(53,135)(54,134)(55,133)(56,132)(57,131)(58,140)(59,139)(60,138)(61,149)(62,148)(63,147)(64,146)(65,145)(66,144)(67,143)(68,142)(69,141)(70,150)(81,158)(82,157)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,160)(90,159)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,70,30,54)(2,69,21,53)(3,68,22,52)(4,67,23,51)(5,66,24,60)(6,65,25,59)(7,64,26,58)(8,63,27,57)(9,62,28,56)(10,61,29,55)(11,130,159,114)(12,129,160,113)(13,128,151,112)(14,127,152,111)(15,126,153,120)(16,125,154,119)(17,124,155,118)(18,123,156,117)(19,122,157,116)(20,121,158,115)(31,72,47,88)(32,71,48,87)(33,80,49,86)(34,79,50,85)(35,78,41,84)(36,77,42,83)(37,76,43,82)(38,75,44,81)(39,74,45,90)(40,73,46,89)(91,137,107,143)(92,136,108,142)(93,135,109,141)(94,134,110,150)(95,133,101,149)(96,132,102,148)(97,131,103,147)(98,140,104,146)(99,139,105,145)(100,138,106,144), (1,39,6,34)(2,40,7,35)(3,31,8,36)(4,32,9,37)(5,33,10,38)(11,139,16,134)(12,140,17,135)(13,131,18,136)(14,132,19,137)(15,133,20,138)(21,46,26,41)(22,47,27,42)(23,48,28,43)(24,49,29,44)(25,50,30,45)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75)(61,86,66,81)(62,87,67,82)(63,88,68,83)(64,89,69,84)(65,90,70,85)(91,122,96,127)(92,123,97,128)(93,124,98,129)(94,125,99,130)(95,126,100,121)(101,120,106,115)(102,111,107,116)(103,112,108,117)(104,113,109,118)(105,114,110,119)(141,160,146,155)(142,151,147,156)(143,152,148,157)(144,153,149,158)(145,154,150,159), (1,16,30,154)(2,15,21,153)(3,14,22,152)(4,13,23,151)(5,12,24,160)(6,11,25,159)(7,20,26,158)(8,19,27,157)(9,18,28,156)(10,17,29,155)(31,137,47,143)(32,136,48,142)(33,135,49,141)(34,134,50,150)(35,133,41,149)(36,132,42,148)(37,131,43,147)(38,140,44,146)(39,139,45,145)(40,138,46,144)(51,117,67,123)(52,116,68,122)(53,115,69,121)(54,114,70,130)(55,113,61,129)(56,112,62,128)(57,111,63,127)(58,120,64,126)(59,119,65,125)(60,118,66,124)(71,103,87,97)(72,102,88,96)(73,101,89,95)(74,110,90,94)(75,109,81,93)(76,108,82,92)(77,107,83,91)(78,106,84,100)(79,105,85,99)(80,104,86,98), (1,110)(2,109)(3,108)(4,107)(5,106)(6,105)(7,104)(8,103)(9,102)(10,101)(11,74)(12,73)(13,72)(14,71)(15,80)(16,79)(17,78)(18,77)(19,76)(20,75)(21,93)(22,92)(23,91)(24,100)(25,99)(26,98)(27,97)(28,96)(29,95)(30,94)(31,112)(32,111)(33,120)(34,119)(35,118)(36,117)(37,116)(38,115)(39,114)(40,113)(41,124)(42,123)(43,122)(44,121)(45,130)(46,129)(47,128)(48,127)(49,126)(50,125)(51,137)(52,136)(53,135)(54,134)(55,133)(56,132)(57,131)(58,140)(59,139)(60,138)(61,149)(62,148)(63,147)(64,146)(65,145)(66,144)(67,143)(68,142)(69,141)(70,150)(81,158)(82,157)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,160)(90,159) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,70,30,54),(2,69,21,53),(3,68,22,52),(4,67,23,51),(5,66,24,60),(6,65,25,59),(7,64,26,58),(8,63,27,57),(9,62,28,56),(10,61,29,55),(11,130,159,114),(12,129,160,113),(13,128,151,112),(14,127,152,111),(15,126,153,120),(16,125,154,119),(17,124,155,118),(18,123,156,117),(19,122,157,116),(20,121,158,115),(31,72,47,88),(32,71,48,87),(33,80,49,86),(34,79,50,85),(35,78,41,84),(36,77,42,83),(37,76,43,82),(38,75,44,81),(39,74,45,90),(40,73,46,89),(91,137,107,143),(92,136,108,142),(93,135,109,141),(94,134,110,150),(95,133,101,149),(96,132,102,148),(97,131,103,147),(98,140,104,146),(99,139,105,145),(100,138,106,144)], [(1,39,6,34),(2,40,7,35),(3,31,8,36),(4,32,9,37),(5,33,10,38),(11,139,16,134),(12,140,17,135),(13,131,18,136),(14,132,19,137),(15,133,20,138),(21,46,26,41),(22,47,27,42),(23,48,28,43),(24,49,29,44),(25,50,30,45),(51,76,56,71),(52,77,57,72),(53,78,58,73),(54,79,59,74),(55,80,60,75),(61,86,66,81),(62,87,67,82),(63,88,68,83),(64,89,69,84),(65,90,70,85),(91,122,96,127),(92,123,97,128),(93,124,98,129),(94,125,99,130),(95,126,100,121),(101,120,106,115),(102,111,107,116),(103,112,108,117),(104,113,109,118),(105,114,110,119),(141,160,146,155),(142,151,147,156),(143,152,148,157),(144,153,149,158),(145,154,150,159)], [(1,16,30,154),(2,15,21,153),(3,14,22,152),(4,13,23,151),(5,12,24,160),(6,11,25,159),(7,20,26,158),(8,19,27,157),(9,18,28,156),(10,17,29,155),(31,137,47,143),(32,136,48,142),(33,135,49,141),(34,134,50,150),(35,133,41,149),(36,132,42,148),(37,131,43,147),(38,140,44,146),(39,139,45,145),(40,138,46,144),(51,117,67,123),(52,116,68,122),(53,115,69,121),(54,114,70,130),(55,113,61,129),(56,112,62,128),(57,111,63,127),(58,120,64,126),(59,119,65,125),(60,118,66,124),(71,103,87,97),(72,102,88,96),(73,101,89,95),(74,110,90,94),(75,109,81,93),(76,108,82,92),(77,107,83,91),(78,106,84,100),(79,105,85,99),(80,104,86,98)], [(1,110),(2,109),(3,108),(4,107),(5,106),(6,105),(7,104),(8,103),(9,102),(10,101),(11,74),(12,73),(13,72),(14,71),(15,80),(16,79),(17,78),(18,77),(19,76),(20,75),(21,93),(22,92),(23,91),(24,100),(25,99),(26,98),(27,97),(28,96),(29,95),(30,94),(31,112),(32,111),(33,120),(34,119),(35,118),(36,117),(37,116),(38,115),(39,114),(40,113),(41,124),(42,123),(43,122),(44,121),(45,130),(46,129),(47,128),(48,127),(49,126),(50,125),(51,137),(52,136),(53,135),(54,134),(55,133),(56,132),(57,131),(58,140),(59,139),(60,138),(61,149),(62,148),(63,147),(64,146),(65,145),(66,144),(67,143),(68,142),(69,141),(70,150),(81,158),(82,157),(83,156),(84,155),(85,154),(86,153),(87,152),(88,151),(89,160),(90,159)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L5A5B10A···10N20A···20X
order12222222224444444444445510···1020···20
size111122202020202222444420202020222···24···4

62 irreducible representations

dim111111222224444
type++++++++++++-
imageC1C2C2C2C2C2D4D5D10D10D202+ 1+42- 1+4D46D10Q8.10D10
kernelC10.2+ 1+4C4⋊D20D102Q8C207D4C10×C4⋊C4C2×C4○D20C2×C20C2×C4⋊C4C4⋊C4C22×C4C2×C4C10C10C2C2
# reps1444124286161144

Matrix representation of C10.2+ 1+4 in GL6(𝔽41)

4000000
0400000
00353400
006000
00003534
000060
,
100000
8400000
00213800
00382000
00002138
00003820
,
20360000
31210000
000010
000001
0040000
0004000
,
20360000
6210000
003241821
0018382623
0018213817
002623233
,
100000
8400000
0022321022
0032192231
001022199
002231922

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,35,6,0,0,0,0,34,0,0,0,0,0,0,0,35,6,0,0,0,0,34,0],[1,8,0,0,0,0,0,40,0,0,0,0,0,0,21,38,0,0,0,0,38,20,0,0,0,0,0,0,21,38,0,0,0,0,38,20],[20,31,0,0,0,0,36,21,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0],[20,6,0,0,0,0,36,21,0,0,0,0,0,0,3,18,18,26,0,0,24,38,21,23,0,0,18,26,38,23,0,0,21,23,17,3],[1,8,0,0,0,0,0,40,0,0,0,0,0,0,22,32,10,22,0,0,32,19,22,31,0,0,10,22,19,9,0,0,22,31,9,22] >;

C10.2+ 1+4 in GAP, Magma, Sage, TeX

C_{10}.2_+^{1+4}
% in TeX

G:=Group("C10.ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1182);
// by ID

G=gap.SmallGroup(320,1182);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,675,570,80,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=b^2,b*a*b^-1=d*a*d^-1=e*a*e=a^-1,a*c=c*a,c*b*c^-1=a^5*b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=e*c*e=a^5*c,e*d*e=a^5*b^2*d>;
// generators/relations

׿
×
𝔽