Aliases: Q8⋊F7, D14.A4, D7⋊SL2(𝔽3), (Q8×D7)⋊2C3, (C7×Q8)⋊2C6, C14.A4⋊2C2, C14.2(C2×A4), C7⋊(C2×SL2(𝔽3)), C2.3(D7⋊A4), SmallGroup(336,135)
Series: Derived ►Chief ►Lower central ►Upper central
C7×Q8 — Q8⋊F7 |
Generators and relations for Q8⋊F7
G = < a,b,c,d | a4=c7=d6=1, b2=a2, bab-1=a-1, ac=ca, dad-1=b, bc=cb, dbd-1=ab, dcd-1=c5 >
Character table of Q8⋊F7
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 7 | 14 | 28A | 28B | 28C | |
size | 1 | 1 | 7 | 7 | 28 | 28 | 6 | 42 | 28 | 28 | 28 | 28 | 28 | 28 | 6 | 6 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | -1 | ζ6 | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | -1 | ζ65 | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 2 | -2 | 2 | -2 | -1 | -1 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | 1 | 2 | -2 | 0 | 0 | 0 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ8 | 2 | -2 | -2 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | 2 | -2 | 0 | 0 | 0 | symplectic lifted from SL2(𝔽3), Schur index 2 |
ρ9 | 2 | -2 | -2 | 2 | ζ65 | ζ6 | 0 | 0 | ζ3 | ζ32 | ζ6 | ζ32 | ζ65 | ζ3 | 2 | -2 | 0 | 0 | 0 | complex lifted from SL2(𝔽3) |
ρ10 | 2 | -2 | -2 | 2 | ζ6 | ζ65 | 0 | 0 | ζ32 | ζ3 | ζ65 | ζ3 | ζ6 | ζ32 | 2 | -2 | 0 | 0 | 0 | complex lifted from SL2(𝔽3) |
ρ11 | 2 | -2 | 2 | -2 | ζ6 | ζ65 | 0 | 0 | ζ6 | ζ3 | ζ3 | ζ65 | ζ32 | ζ32 | 2 | -2 | 0 | 0 | 0 | complex lifted from SL2(𝔽3) |
ρ12 | 2 | -2 | 2 | -2 | ζ65 | ζ6 | 0 | 0 | ζ65 | ζ32 | ζ32 | ζ6 | ζ3 | ζ3 | 2 | -2 | 0 | 0 | 0 | complex lifted from SL2(𝔽3) |
ρ13 | 3 | 3 | -3 | -3 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | orthogonal lifted from C2×A4 |
ρ14 | 3 | 3 | 3 | 3 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | -1 | -1 | -1 | orthogonal lifted from A4 |
ρ15 | 6 | 6 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F7 |
ρ16 | 6 | 6 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 2ζ75+2ζ72+1 | 2ζ74+2ζ73+1 | 2ζ76+2ζ7+1 | orthogonal lifted from D7⋊A4 |
ρ17 | 6 | 6 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 2ζ76+2ζ7+1 | 2ζ75+2ζ72+1 | 2ζ74+2ζ73+1 | orthogonal lifted from D7⋊A4 |
ρ18 | 6 | 6 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 2ζ74+2ζ73+1 | 2ζ76+2ζ7+1 | 2ζ75+2ζ72+1 | orthogonal lifted from D7⋊A4 |
ρ19 | 12 | -12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 25 17 31)(2 26 18 32)(3 27 19 33)(4 28 20 34)(5 22 21 35)(6 23 15 29)(7 24 16 30)(8 43 51 37)(9 44 52 38)(10 45 53 39)(11 46 54 40)(12 47 55 41)(13 48 56 42)(14 49 50 36)
(1 39 17 45)(2 40 18 46)(3 41 19 47)(4 42 20 48)(5 36 21 49)(6 37 15 43)(7 38 16 44)(8 23 51 29)(9 24 52 30)(10 25 53 31)(11 26 54 32)(12 27 55 33)(13 28 56 34)(14 22 50 35)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(2 4 3 7 5 6)(8 46 34 12 44 35)(9 49 29 11 48 33)(10 45 31)(13 47 30 14 43 32)(15 18 20 19 16 21)(22 51 40 28 55 38)(23 54 42 27 52 36)(24 50 37 26 56 41)(25 53 39)
G:=sub<Sym(56)| (1,25,17,31)(2,26,18,32)(3,27,19,33)(4,28,20,34)(5,22,21,35)(6,23,15,29)(7,24,16,30)(8,43,51,37)(9,44,52,38)(10,45,53,39)(11,46,54,40)(12,47,55,41)(13,48,56,42)(14,49,50,36), (1,39,17,45)(2,40,18,46)(3,41,19,47)(4,42,20,48)(5,36,21,49)(6,37,15,43)(7,38,16,44)(8,23,51,29)(9,24,52,30)(10,25,53,31)(11,26,54,32)(12,27,55,33)(13,28,56,34)(14,22,50,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,4,3,7,5,6)(8,46,34,12,44,35)(9,49,29,11,48,33)(10,45,31)(13,47,30,14,43,32)(15,18,20,19,16,21)(22,51,40,28,55,38)(23,54,42,27,52,36)(24,50,37,26,56,41)(25,53,39)>;
G:=Group( (1,25,17,31)(2,26,18,32)(3,27,19,33)(4,28,20,34)(5,22,21,35)(6,23,15,29)(7,24,16,30)(8,43,51,37)(9,44,52,38)(10,45,53,39)(11,46,54,40)(12,47,55,41)(13,48,56,42)(14,49,50,36), (1,39,17,45)(2,40,18,46)(3,41,19,47)(4,42,20,48)(5,36,21,49)(6,37,15,43)(7,38,16,44)(8,23,51,29)(9,24,52,30)(10,25,53,31)(11,26,54,32)(12,27,55,33)(13,28,56,34)(14,22,50,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,4,3,7,5,6)(8,46,34,12,44,35)(9,49,29,11,48,33)(10,45,31)(13,47,30,14,43,32)(15,18,20,19,16,21)(22,51,40,28,55,38)(23,54,42,27,52,36)(24,50,37,26,56,41)(25,53,39) );
G=PermutationGroup([[(1,25,17,31),(2,26,18,32),(3,27,19,33),(4,28,20,34),(5,22,21,35),(6,23,15,29),(7,24,16,30),(8,43,51,37),(9,44,52,38),(10,45,53,39),(11,46,54,40),(12,47,55,41),(13,48,56,42),(14,49,50,36)], [(1,39,17,45),(2,40,18,46),(3,41,19,47),(4,42,20,48),(5,36,21,49),(6,37,15,43),(7,38,16,44),(8,23,51,29),(9,24,52,30),(10,25,53,31),(11,26,54,32),(12,27,55,33),(13,28,56,34),(14,22,50,35)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(2,4,3,7,5,6),(8,46,34,12,44,35),(9,49,29,11,48,33),(10,45,31),(13,47,30,14,43,32),(15,18,20,19,16,21),(22,51,40,28,55,38),(23,54,42,27,52,36),(24,50,37,26,56,41),(25,53,39)]])
Matrix representation of Q8⋊F7 ►in GL8(𝔽337)
0 | 336 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 250 | 0 | 195 | 219 | 219 | 195 |
0 | 0 | 142 | 55 | 142 | 0 | 24 | 24 |
0 | 0 | 313 | 118 | 31 | 118 | 313 | 0 |
0 | 0 | 0 | 313 | 118 | 31 | 118 | 313 |
0 | 0 | 24 | 24 | 0 | 142 | 55 | 142 |
0 | 0 | 195 | 219 | 219 | 195 | 0 | 250 |
208 | 209 | 0 | 0 | 0 | 0 | 0 | 0 |
209 | 129 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 31 | 0 | 118 | 313 | 313 | 118 |
0 | 0 | 219 | 250 | 219 | 0 | 195 | 195 |
0 | 0 | 142 | 24 | 55 | 24 | 142 | 0 |
0 | 0 | 0 | 142 | 24 | 55 | 24 | 142 |
0 | 0 | 195 | 195 | 0 | 219 | 250 | 219 |
0 | 0 | 118 | 313 | 313 | 118 | 0 | 31 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 336 | 336 | 336 | 336 | 336 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
336 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
208 | 209 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 336 | 336 | 336 | 336 | 336 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,GF(337))| [0,1,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,0,250,142,313,0,24,195,0,0,0,55,118,313,24,219,0,0,195,142,31,118,0,219,0,0,219,0,118,31,142,195,0,0,219,24,313,118,55,0,0,0,195,24,0,313,142,250],[208,209,0,0,0,0,0,0,209,129,0,0,0,0,0,0,0,0,31,219,142,0,195,118,0,0,0,250,24,142,195,313,0,0,118,219,55,24,0,313,0,0,313,0,24,55,219,118,0,0,313,195,142,24,250,0,0,0,118,195,0,142,219,31],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,336,1,0,0,0,0,0,0,336,0,1,0,0,0,0,0,336,0,0,1,0,0,0,0,336,0,0,0,1,0,0,0,336,0,0,0,0,1,0,0,336,0,0,0,0,0],[336,208,0,0,0,0,0,0,0,209,0,0,0,0,0,0,0,0,1,0,0,0,336,0,0,0,0,0,0,1,336,0,0,0,0,0,0,0,336,0,0,0,0,0,1,0,336,0,0,0,0,0,0,0,336,1,0,0,0,1,0,0,336,0] >;
Q8⋊F7 in GAP, Magma, Sage, TeX
Q_8\rtimes F_7
% in TeX
G:=Group("Q8:F7");
// GroupNames label
G:=SmallGroup(336,135);
// by ID
G=gap.SmallGroup(336,135);
# by ID
G:=PCGroup([6,-2,-3,-2,2,-7,-2,116,518,225,735,357,4324,1450]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^7=d^6=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,d*a*d^-1=b,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^5>;
// generators/relations
Export
Subgroup lattice of Q8⋊F7 in TeX
Character table of Q8⋊F7 in TeX