Copied to
clipboard

G = Q8.F7order 336 = 24·3·7

The non-split extension by Q8 of F7 acting via F7/D7=C3

non-abelian, soluble

Aliases: Q8.F7, Dic7.A4, C7⋊(C4.A4), C14.A41C2, C14.1(C2×A4), Q82D72C3, (C7×Q8).2C6, C2.2(D7⋊A4), SmallGroup(336,134)

Series: Derived Chief Lower central Upper central

C1C2C7×Q8 — Q8.F7
C1C2C14C7×Q8C14.A4 — Q8.F7
C7×Q8 — Q8.F7
C1C2

Generators and relations for Q8.F7
 G = < a,b,c,d | a4=c7=1, b2=d6=a2, bab-1=a-1, ac=ca, dad-1=b, bc=cb, dbd-1=ab, dcd-1=c5 >

42C2
28C3
3C4
7C4
21C22
28C6
6D7
4C7⋊C3
21D4
21C2×C4
28C12
3D14
3C28
4C2×C7⋊C3
7C4○D4
7SL2(𝔽3)
3C4×D7
3D28
4C7⋊C12
7C4.A4

Character table of Q8.F7

 class 12A2B3A3B4A4B4C6A6B712A12B12C12D1428A28B28C
 size 1142282867728286282828286121212
ρ11111111111111111111    trivial
ρ211-1111-1-1111-1-1-1-11111    linear of order 2
ρ311-1ζ3ζ321-1-1ζ3ζ321ζ6ζ65ζ65ζ61111    linear of order 6
ρ4111ζ32ζ3111ζ32ζ31ζ3ζ32ζ32ζ31111    linear of order 3
ρ511-1ζ32ζ31-1-1ζ32ζ31ζ65ζ6ζ6ζ651111    linear of order 6
ρ6111ζ3ζ32111ζ3ζ321ζ32ζ3ζ3ζ321111    linear of order 3
ρ72-20-1-102i-2i112i-ii-i-2000    complex lifted from C4.A4
ρ82-20-1-10-2i2i112-ii-ii-2000    complex lifted from C4.A4
ρ92-20ζ65ζ60-2i2iζ3ζ322ζ43ζ32ζ4ζ3ζ43ζ3ζ4ζ32-2000    complex lifted from C4.A4
ρ102-20ζ6ζ650-2i2iζ32ζ32ζ43ζ3ζ4ζ32ζ43ζ32ζ4ζ3-2000    complex lifted from C4.A4
ρ112-20ζ65ζ602i-2iζ3ζ322ζ4ζ32ζ43ζ3ζ4ζ3ζ43ζ32-2000    complex lifted from C4.A4
ρ122-20ζ6ζ6502i-2iζ32ζ32ζ4ζ3ζ43ζ32ζ4ζ32ζ43ζ3-2000    complex lifted from C4.A4
ρ1333-100-13300300003-1-1-1    orthogonal lifted from A4
ρ1433100-1-3-300300003-1-1-1    orthogonal lifted from C2×A4
ρ156600060000-10000-1-1-1-1    orthogonal lifted from F7
ρ1666000-20000-10000-175+2ζ72+176+2ζ7+174+2ζ73+1    orthogonal lifted from D7⋊A4
ρ1766000-20000-10000-176+2ζ7+174+2ζ73+175+2ζ72+1    orthogonal lifted from D7⋊A4
ρ1866000-20000-10000-174+2ζ73+175+2ζ72+176+2ζ7+1    orthogonal lifted from D7⋊A4
ρ1912-1200000000-200002000    orthogonal faithful, Schur index 2

Smallest permutation representation of Q8.F7
On 112 points
Generators in S112
(1 12 3 6)(2 9 4 15)(5 7 11 13)(8 10 14 16)(17 108 23 102)(18 65 24 71)(19 57 25 63)(20 111 26 105)(21 68 27 74)(22 60 28 54)(29 51 35 45)(30 96 36 90)(31 77 37 83)(32 42 38 48)(33 99 39 93)(34 80 40 86)(41 91 47 97)(43 79 49 85)(44 94 50 100)(46 82 52 88)(53 112 59 106)(55 76 61 70)(56 103 62 109)(58 67 64 73)(66 110 72 104)(69 101 75 107)(78 98 84 92)(81 89 87 95)
(1 8 3 14)(2 5 4 11)(6 10 12 16)(7 9 13 15)(17 76 23 70)(18 56 24 62)(19 110 25 104)(20 67 26 73)(21 59 27 53)(22 101 28 107)(29 95 35 89)(30 88 36 82)(31 41 37 47)(32 98 38 92)(33 79 39 85)(34 44 40 50)(42 78 48 84)(43 93 49 99)(45 81 51 87)(46 96 52 90)(54 75 60 69)(55 102 61 108)(57 66 63 72)(58 105 64 111)(65 109 71 103)(68 112 74 106)(77 97 83 91)(80 100 86 94)
(1 81 77 106 85 110 102)(2 111 107 82 103 86 78)(3 87 83 112 79 104 108)(4 105 101 88 109 80 84)(5 58 22 30 65 94 48)(6 95 31 59 49 66 23)(7 67 60 96 24 50 32)(8 51 97 68 33 25 61)(9 26 69 52 62 34 98)(10 35 41 27 99 63 70)(11 64 28 36 71 100 42)(12 89 37 53 43 72 17)(13 73 54 90 18 44 38)(14 45 91 74 39 19 55)(15 20 75 46 56 40 92)(16 29 47 21 93 57 76)
(1 2 3 4)(5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,12,3,6)(2,9,4,15)(5,7,11,13)(8,10,14,16)(17,108,23,102)(18,65,24,71)(19,57,25,63)(20,111,26,105)(21,68,27,74)(22,60,28,54)(29,51,35,45)(30,96,36,90)(31,77,37,83)(32,42,38,48)(33,99,39,93)(34,80,40,86)(41,91,47,97)(43,79,49,85)(44,94,50,100)(46,82,52,88)(53,112,59,106)(55,76,61,70)(56,103,62,109)(58,67,64,73)(66,110,72,104)(69,101,75,107)(78,98,84,92)(81,89,87,95), (1,8,3,14)(2,5,4,11)(6,10,12,16)(7,9,13,15)(17,76,23,70)(18,56,24,62)(19,110,25,104)(20,67,26,73)(21,59,27,53)(22,101,28,107)(29,95,35,89)(30,88,36,82)(31,41,37,47)(32,98,38,92)(33,79,39,85)(34,44,40,50)(42,78,48,84)(43,93,49,99)(45,81,51,87)(46,96,52,90)(54,75,60,69)(55,102,61,108)(57,66,63,72)(58,105,64,111)(65,109,71,103)(68,112,74,106)(77,97,83,91)(80,100,86,94), (1,81,77,106,85,110,102)(2,111,107,82,103,86,78)(3,87,83,112,79,104,108)(4,105,101,88,109,80,84)(5,58,22,30,65,94,48)(6,95,31,59,49,66,23)(7,67,60,96,24,50,32)(8,51,97,68,33,25,61)(9,26,69,52,62,34,98)(10,35,41,27,99,63,70)(11,64,28,36,71,100,42)(12,89,37,53,43,72,17)(13,73,54,90,18,44,38)(14,45,91,74,39,19,55)(15,20,75,46,56,40,92)(16,29,47,21,93,57,76), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,12,3,6)(2,9,4,15)(5,7,11,13)(8,10,14,16)(17,108,23,102)(18,65,24,71)(19,57,25,63)(20,111,26,105)(21,68,27,74)(22,60,28,54)(29,51,35,45)(30,96,36,90)(31,77,37,83)(32,42,38,48)(33,99,39,93)(34,80,40,86)(41,91,47,97)(43,79,49,85)(44,94,50,100)(46,82,52,88)(53,112,59,106)(55,76,61,70)(56,103,62,109)(58,67,64,73)(66,110,72,104)(69,101,75,107)(78,98,84,92)(81,89,87,95), (1,8,3,14)(2,5,4,11)(6,10,12,16)(7,9,13,15)(17,76,23,70)(18,56,24,62)(19,110,25,104)(20,67,26,73)(21,59,27,53)(22,101,28,107)(29,95,35,89)(30,88,36,82)(31,41,37,47)(32,98,38,92)(33,79,39,85)(34,44,40,50)(42,78,48,84)(43,93,49,99)(45,81,51,87)(46,96,52,90)(54,75,60,69)(55,102,61,108)(57,66,63,72)(58,105,64,111)(65,109,71,103)(68,112,74,106)(77,97,83,91)(80,100,86,94), (1,81,77,106,85,110,102)(2,111,107,82,103,86,78)(3,87,83,112,79,104,108)(4,105,101,88,109,80,84)(5,58,22,30,65,94,48)(6,95,31,59,49,66,23)(7,67,60,96,24,50,32)(8,51,97,68,33,25,61)(9,26,69,52,62,34,98)(10,35,41,27,99,63,70)(11,64,28,36,71,100,42)(12,89,37,53,43,72,17)(13,73,54,90,18,44,38)(14,45,91,74,39,19,55)(15,20,75,46,56,40,92)(16,29,47,21,93,57,76), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,12,3,6),(2,9,4,15),(5,7,11,13),(8,10,14,16),(17,108,23,102),(18,65,24,71),(19,57,25,63),(20,111,26,105),(21,68,27,74),(22,60,28,54),(29,51,35,45),(30,96,36,90),(31,77,37,83),(32,42,38,48),(33,99,39,93),(34,80,40,86),(41,91,47,97),(43,79,49,85),(44,94,50,100),(46,82,52,88),(53,112,59,106),(55,76,61,70),(56,103,62,109),(58,67,64,73),(66,110,72,104),(69,101,75,107),(78,98,84,92),(81,89,87,95)], [(1,8,3,14),(2,5,4,11),(6,10,12,16),(7,9,13,15),(17,76,23,70),(18,56,24,62),(19,110,25,104),(20,67,26,73),(21,59,27,53),(22,101,28,107),(29,95,35,89),(30,88,36,82),(31,41,37,47),(32,98,38,92),(33,79,39,85),(34,44,40,50),(42,78,48,84),(43,93,49,99),(45,81,51,87),(46,96,52,90),(54,75,60,69),(55,102,61,108),(57,66,63,72),(58,105,64,111),(65,109,71,103),(68,112,74,106),(77,97,83,91),(80,100,86,94)], [(1,81,77,106,85,110,102),(2,111,107,82,103,86,78),(3,87,83,112,79,104,108),(4,105,101,88,109,80,84),(5,58,22,30,65,94,48),(6,95,31,59,49,66,23),(7,67,60,96,24,50,32),(8,51,97,68,33,25,61),(9,26,69,52,62,34,98),(10,35,41,27,99,63,70),(11,64,28,36,71,100,42),(12,89,37,53,43,72,17),(13,73,54,90,18,44,38),(14,45,91,74,39,19,55),(15,20,75,46,56,40,92),(16,29,47,21,93,57,76)], [(1,2,3,4),(5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112)]])

Matrix representation of Q8.F7 in GL8(𝔽337)

0336000000
10000000
005502414214224
00313313130118118
002191952501952190
000219195250195219
00118118031331313
002414214224055
,
128129000000
129209000000
002500195219219195
001425514202424
00313118311183130
00031311831118313
002424014255142
001952192191950250
,
10000000
01000000
00336336336336336336
00100000
00010000
00001000
00000100
00000010
,
1890000000
72220000000
003117170170
000320032032014
001700311717
000311717017
00323323306323306306
003200320320140

G:=sub<GL(8,GF(337))| [0,1,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,0,55,313,219,0,118,24,0,0,0,31,195,219,118,142,0,0,24,313,250,195,0,142,0,0,142,0,195,250,313,24,0,0,142,118,219,195,31,0,0,0,24,118,0,219,313,55],[128,129,0,0,0,0,0,0,129,209,0,0,0,0,0,0,0,0,250,142,313,0,24,195,0,0,0,55,118,313,24,219,0,0,195,142,31,118,0,219,0,0,219,0,118,31,142,195,0,0,219,24,313,118,55,0,0,0,195,24,0,313,142,250],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,336,1,0,0,0,0,0,0,336,0,1,0,0,0,0,0,336,0,0,1,0,0,0,0,336,0,0,0,1,0,0,0,336,0,0,0,0,1,0,0,336,0,0,0,0,0],[189,72,0,0,0,0,0,0,0,220,0,0,0,0,0,0,0,0,31,0,17,0,323,320,0,0,17,320,0,31,323,0,0,0,17,0,0,17,306,320,0,0,0,320,31,17,323,320,0,0,17,320,17,0,306,14,0,0,0,14,17,17,306,0] >;

Q8.F7 in GAP, Magma, Sage, TeX

Q_8.F_7
% in TeX

G:=Group("Q8.F7");
// GroupNames label

G:=SmallGroup(336,134);
// by ID

G=gap.SmallGroup(336,134);
# by ID

G:=PCGroup([6,-2,-3,-2,2,-7,-2,1008,116,518,225,735,357,4324,1450]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^7=1,b^2=d^6=a^2,b*a*b^-1=a^-1,a*c=c*a,d*a*d^-1=b,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^5>;
// generators/relations

Export

Subgroup lattice of Q8.F7 in TeX
Character table of Q8.F7 in TeX

׿
×
𝔽