direct product, metacyclic, supersoluble, monomial, Z-group
Aliases: S3×C11⋊C5, C33⋊3C10, (S3×C11)⋊C5, C11⋊2(C5×S3), C3⋊(C2×C11⋊C5), (C3×C11⋊C5)⋊3C2, SmallGroup(330,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C11 — C33 — C3×C11⋊C5 — S3×C11⋊C5 |
C33 — S3×C11⋊C5 |
Generators and relations for S3×C11⋊C5
G = < a,b,c,d | a3=b2=c11=d5=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >
Character table of S3×C11⋊C5
class | 1 | 2 | 3 | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 11A | 11B | 15A | 15B | 15C | 15D | 22A | 22B | 33A | 33B | |
size | 1 | 3 | 2 | 11 | 11 | 11 | 11 | 33 | 33 | 33 | 33 | 5 | 5 | 22 | 22 | 22 | 22 | 15 | 15 | 10 | 10 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | -1 | -1 | 1 | 1 | linear of order 10 |
ρ4 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | ζ54 | ζ5 | ζ52 | ζ53 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ5 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | ζ53 | ζ52 | ζ54 | ζ5 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ6 | 1 | -1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | -1 | -1 | 1 | 1 | linear of order 10 |
ρ7 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | ζ52 | ζ53 | ζ5 | ζ54 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ8 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | ζ5 | ζ54 | ζ53 | ζ52 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ9 | 1 | -1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | -1 | -1 | 1 | 1 | linear of order 10 |
ρ10 | 1 | -1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | -1 | -1 | 1 | 1 | linear of order 10 |
ρ11 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 0 | -1 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | 0 | 0 | 0 | 0 | 2 | 2 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | 0 | 0 | -1 | -1 | complex lifted from C5×S3 |
ρ13 | 2 | 0 | -1 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | 0 | 0 | 0 | 0 | 2 | 2 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | 0 | 0 | -1 | -1 | complex lifted from C5×S3 |
ρ14 | 2 | 0 | -1 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | 0 | 0 | 0 | 0 | 2 | 2 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | 0 | 0 | -1 | -1 | complex lifted from C5×S3 |
ρ15 | 2 | 0 | -1 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | 0 | 0 | 0 | 0 | 2 | 2 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | 0 | 0 | -1 | -1 | complex lifted from C5×S3 |
ρ16 | 5 | -5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 0 | 0 | 0 | 0 | 1-√-11/2 | 1+√-11/2 | -1+√-11/2 | -1-√-11/2 | complex lifted from C2×C11⋊C5 |
ρ17 | 5 | -5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 0 | 0 | 0 | 0 | 1+√-11/2 | 1-√-11/2 | -1-√-11/2 | -1+√-11/2 | complex lifted from C2×C11⋊C5 |
ρ18 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | -1-√-11/2 | -1+√-11/2 | complex lifted from C11⋊C5 |
ρ19 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | -1+√-11/2 | -1-√-11/2 | complex lifted from C11⋊C5 |
ρ20 | 10 | 0 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11 | -1-√-11 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-11/2 | 1-√-11/2 | complex faithful |
ρ21 | 10 | 0 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11 | -1+√-11 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-11/2 | 1+√-11/2 | complex faithful |
(1 12 23)(2 13 24)(3 14 25)(4 15 26)(5 16 27)(6 17 28)(7 18 29)(8 19 30)(9 20 31)(10 21 32)(11 22 33)
(12 23)(13 24)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)
(2 5 6 10 4)(3 9 11 8 7)(13 16 17 21 15)(14 20 22 19 18)(24 27 28 32 26)(25 31 33 30 29)
G:=sub<Sym(33)| (1,12,23)(2,13,24)(3,14,25)(4,15,26)(5,16,27)(6,17,28)(7,18,29)(8,19,30)(9,20,31)(10,21,32)(11,22,33), (12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)>;
G:=Group( (1,12,23)(2,13,24)(3,14,25)(4,15,26)(5,16,27)(6,17,28)(7,18,29)(8,19,30)(9,20,31)(10,21,32)(11,22,33), (12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29) );
G=PermutationGroup([[(1,12,23),(2,13,24),(3,14,25),(4,15,26),(5,16,27),(6,17,28),(7,18,29),(8,19,30),(9,20,31),(10,21,32),(11,22,33)], [(12,23),(13,24),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33)], [(2,5,6,10,4),(3,9,11,8,7),(13,16,17,21,15),(14,20,22,19,18),(24,27,28,32,26),(25,31,33,30,29)]])
Matrix representation of S3×C11⋊C5 ►in GL7(𝔽331)
0 | 330 | 0 | 0 | 0 | 0 | 0 |
1 | 330 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 330 | 330 | 330 | 330 | 104 |
0 | 0 | 1 | 0 | 0 | 0 | 228 |
0 | 0 | 0 | 1 | 0 | 0 | 329 |
0 | 0 | 0 | 0 | 1 | 0 | 106 |
0 | 0 | 0 | 0 | 0 | 1 | 227 |
150 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 150 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 330 | 1 | 0 | 106 |
0 | 0 | 0 | 105 | 0 | 0 | 227 |
0 | 0 | 0 | 227 | 0 | 0 | 103 |
0 | 0 | 1 | 330 | 0 | 0 | 2 |
0 | 0 | 0 | 1 | 0 | 1 | 226 |
G:=sub<GL(7,GF(331))| [0,1,0,0,0,0,0,330,330,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,330,1,0,0,0,0,0,330,0,1,0,0,0,0,330,0,0,1,0,0,0,330,0,0,0,1,0,0,104,228,329,106,227],[150,0,0,0,0,0,0,0,150,0,0,0,0,0,0,0,0,0,0,1,0,0,0,330,105,227,330,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,106,227,103,2,226] >;
S3×C11⋊C5 in GAP, Magma, Sage, TeX
S_3\times C_{11}\rtimes C_5
% in TeX
G:=Group("S3xC11:C5");
// GroupNames label
G:=SmallGroup(330,2);
// by ID
G=gap.SmallGroup(330,2);
# by ID
G:=PCGroup([4,-2,-5,-3,-11,242,967]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^11=d^5=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations
Export
Subgroup lattice of S3×C11⋊C5 in TeX
Character table of S3×C11⋊C5 in TeX