Extensions 1→N→G→Q→1 with N=C8×C7⋊C3 and Q=C2

Direct product G=N×Q with N=C8×C7⋊C3 and Q=C2
dρLabelID
C2×C8×C7⋊C3112C2xC8xC7:C3336,51

Semidirect products G=N:Q with N=C8×C7⋊C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×C7⋊C3)⋊1C2 = D56⋊C3φ: C2/C1C2 ⊆ Out C8×C7⋊C3566+(C8xC7:C3):1C2336,10
(C8×C7⋊C3)⋊2C2 = C56⋊C6φ: C2/C1C2 ⊆ Out C8×C7⋊C3566(C8xC7:C3):2C2336,9
(C8×C7⋊C3)⋊3C2 = C8×F7φ: C2/C1C2 ⊆ Out C8×C7⋊C3566(C8xC7:C3):3C2336,7
(C8×C7⋊C3)⋊4C2 = C8⋊F7φ: C2/C1C2 ⊆ Out C8×C7⋊C3566(C8xC7:C3):4C2336,8
(C8×C7⋊C3)⋊5C2 = D8×C7⋊C3φ: C2/C1C2 ⊆ Out C8×C7⋊C3566(C8xC7:C3):5C2336,53
(C8×C7⋊C3)⋊6C2 = SD16×C7⋊C3φ: C2/C1C2 ⊆ Out C8×C7⋊C3566(C8xC7:C3):6C2336,54
(C8×C7⋊C3)⋊7C2 = M4(2)×C7⋊C3φ: C2/C1C2 ⊆ Out C8×C7⋊C3566(C8xC7:C3):7C2336,52

Non-split extensions G=N.Q with N=C8×C7⋊C3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×C7⋊C3).1C2 = C8.F7φ: C2/C1C2 ⊆ Out C8×C7⋊C31126-(C8xC7:C3).1C2336,11
(C8×C7⋊C3).2C2 = C7⋊C48φ: C2/C1C2 ⊆ Out C8×C7⋊C31126(C8xC7:C3).2C2336,1
(C8×C7⋊C3).3C2 = Q16×C7⋊C3φ: C2/C1C2 ⊆ Out C8×C7⋊C31126(C8xC7:C3).3C2336,55
(C8×C7⋊C3).4C2 = C16×C7⋊C3φ: trivial image1123(C8xC7:C3).4C2336,2

׿
×
𝔽