Extensions 1→N→G→Q→1 with N=C24 and Q=D7

Direct product G=N×Q with N=C24 and Q=D7
dρLabelID
D7×C241682D7xC24336,58

Semidirect products G=N:Q with N=C24 and Q=D7
extensionφ:Q→Aut NdρLabelID
C241D7 = D168φ: D7/C7C2 ⊆ Aut C241682+C24:1D7336,93
C242D7 = C8⋊D21φ: D7/C7C2 ⊆ Aut C241682C24:2D7336,92
C243D7 = C3×D56φ: D7/C7C2 ⊆ Aut C241682C24:3D7336,61
C244D7 = C8×D21φ: D7/C7C2 ⊆ Aut C241682C24:4D7336,90
C245D7 = C56⋊S3φ: D7/C7C2 ⊆ Aut C241682C24:5D7336,91
C246D7 = C3×C56⋊C2φ: D7/C7C2 ⊆ Aut C241682C24:6D7336,60
C247D7 = C3×C8⋊D7φ: D7/C7C2 ⊆ Aut C241682C24:7D7336,59

Non-split extensions G=N.Q with N=C24 and Q=D7
extensionφ:Q→Aut NdρLabelID
C24.1D7 = Dic84φ: D7/C7C2 ⊆ Aut C243362-C24.1D7336,94
C24.2D7 = C3×Dic28φ: D7/C7C2 ⊆ Aut C243362C24.2D7336,62
C24.3D7 = C21⋊C16φ: D7/C7C2 ⊆ Aut C243362C24.3D7336,5
C24.4D7 = C3×C7⋊C16central extension (φ=1)3362C24.4D7336,4

׿
×
𝔽