Extensions 1→N→G→Q→1 with N=C24 and Q=D7

Direct product G=NxQ with N=C24 and Q=D7
dρLabelID
D7xC241682D7xC24336,58

Semidirect products G=N:Q with N=C24 and Q=D7
extensionφ:Q→Aut NdρLabelID
C24:1D7 = D168φ: D7/C7C2 ⊆ Aut C241682+C24:1D7336,93
C24:2D7 = C8:D21φ: D7/C7C2 ⊆ Aut C241682C24:2D7336,92
C24:3D7 = C3xD56φ: D7/C7C2 ⊆ Aut C241682C24:3D7336,61
C24:4D7 = C8xD21φ: D7/C7C2 ⊆ Aut C241682C24:4D7336,90
C24:5D7 = C56:S3φ: D7/C7C2 ⊆ Aut C241682C24:5D7336,91
C24:6D7 = C3xC56:C2φ: D7/C7C2 ⊆ Aut C241682C24:6D7336,60
C24:7D7 = C3xC8:D7φ: D7/C7C2 ⊆ Aut C241682C24:7D7336,59

Non-split extensions G=N.Q with N=C24 and Q=D7
extensionφ:Q→Aut NdρLabelID
C24.1D7 = Dic84φ: D7/C7C2 ⊆ Aut C243362-C24.1D7336,94
C24.2D7 = C3xDic28φ: D7/C7C2 ⊆ Aut C243362C24.2D7336,62
C24.3D7 = C21:C16φ: D7/C7C2 ⊆ Aut C243362C24.3D7336,5
C24.4D7 = C3xC7:C16central extension (φ=1)3362C24.4D7336,4

׿
x
:
Z
F
o
wr
Q
<