extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9)⋊1C12 = C32⋊Dic9 | φ: C12/C2 → C6 ⊆ Aut C3×C9 | 108 | | (C3xC9):1C12 | 324,8 |
(C3×C9)⋊2C12 = He3.Dic3 | φ: C12/C2 → C6 ⊆ Aut C3×C9 | 108 | 6- | (C3xC9):2C12 | 324,16 |
(C3×C9)⋊3C12 = He3.2Dic3 | φ: C12/C2 → C6 ⊆ Aut C3×C9 | 108 | 6- | (C3xC9):3C12 | 324,18 |
(C3×C9)⋊4C12 = C3×C9⋊C12 | φ: C12/C2 → C6 ⊆ Aut C3×C9 | 36 | 6 | (C3xC9):4C12 | 324,94 |
(C3×C9)⋊5C12 = C33.Dic3 | φ: C12/C2 → C6 ⊆ Aut C3×C9 | 108 | | (C3xC9):5C12 | 324,100 |
(C3×C9)⋊6C12 = He3.4Dic3 | φ: C12/C2 → C6 ⊆ Aut C3×C9 | 108 | 6- | (C3xC9):6C12 | 324,101 |
(C3×C9)⋊7C12 = Dic3×3- 1+2 | φ: C12/C2 → C6 ⊆ Aut C3×C9 | 36 | 6 | (C3xC9):7C12 | 324,95 |
(C3×C9)⋊8C12 = C4×C32⋊C9 | φ: C12/C4 → C3 ⊆ Aut C3×C9 | 108 | | (C3xC9):8C12 | 324,27 |
(C3×C9)⋊9C12 = C4×He3.C3 | φ: C12/C4 → C3 ⊆ Aut C3×C9 | 108 | 3 | (C3xC9):9C12 | 324,32 |
(C3×C9)⋊10C12 = C4×He3⋊C3 | φ: C12/C4 → C3 ⊆ Aut C3×C9 | 108 | 3 | (C3xC9):10C12 | 324,33 |
(C3×C9)⋊11C12 = C12×3- 1+2 | φ: C12/C4 → C3 ⊆ Aut C3×C9 | 108 | | (C3xC9):11C12 | 324,107 |
(C3×C9)⋊12C12 = C4×C9○He3 | φ: C12/C4 → C3 ⊆ Aut C3×C9 | 108 | 3 | (C3xC9):12C12 | 324,108 |
(C3×C9)⋊13C12 = Dic3×C3×C9 | φ: C12/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):13C12 | 324,91 |
(C3×C9)⋊14C12 = C32×Dic9 | φ: C12/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):14C12 | 324,90 |
(C3×C9)⋊15C12 = C3×C9⋊Dic3 | φ: C12/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):15C12 | 324,96 |