Extensions 1→N→G→Q→1 with N=C3×C9 and Q=C12

Direct product G=N×Q with N=C3×C9 and Q=C12
dρLabelID
C32×C36324C3^2xC36324,105

Semidirect products G=N:Q with N=C3×C9 and Q=C12
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1C12 = C32⋊Dic9φ: C12/C2C6 ⊆ Aut C3×C9108(C3xC9):1C12324,8
(C3×C9)⋊2C12 = He3.Dic3φ: C12/C2C6 ⊆ Aut C3×C91086-(C3xC9):2C12324,16
(C3×C9)⋊3C12 = He3.2Dic3φ: C12/C2C6 ⊆ Aut C3×C91086-(C3xC9):3C12324,18
(C3×C9)⋊4C12 = C3×C9⋊C12φ: C12/C2C6 ⊆ Aut C3×C9366(C3xC9):4C12324,94
(C3×C9)⋊5C12 = C33.Dic3φ: C12/C2C6 ⊆ Aut C3×C9108(C3xC9):5C12324,100
(C3×C9)⋊6C12 = He3.4Dic3φ: C12/C2C6 ⊆ Aut C3×C91086-(C3xC9):6C12324,101
(C3×C9)⋊7C12 = Dic3×3- 1+2φ: C12/C2C6 ⊆ Aut C3×C9366(C3xC9):7C12324,95
(C3×C9)⋊8C12 = C4×C32⋊C9φ: C12/C4C3 ⊆ Aut C3×C9108(C3xC9):8C12324,27
(C3×C9)⋊9C12 = C4×He3.C3φ: C12/C4C3 ⊆ Aut C3×C91083(C3xC9):9C12324,32
(C3×C9)⋊10C12 = C4×He3⋊C3φ: C12/C4C3 ⊆ Aut C3×C91083(C3xC9):10C12324,33
(C3×C9)⋊11C12 = C12×3- 1+2φ: C12/C4C3 ⊆ Aut C3×C9108(C3xC9):11C12324,107
(C3×C9)⋊12C12 = C4×C9○He3φ: C12/C4C3 ⊆ Aut C3×C91083(C3xC9):12C12324,108
(C3×C9)⋊13C12 = Dic3×C3×C9φ: C12/C6C2 ⊆ Aut C3×C9108(C3xC9):13C12324,91
(C3×C9)⋊14C12 = C32×Dic9φ: C12/C6C2 ⊆ Aut C3×C9108(C3xC9):14C12324,90
(C3×C9)⋊15C12 = C3×C9⋊Dic3φ: C12/C6C2 ⊆ Aut C3×C9108(C3xC9):15C12324,96

Non-split extensions G=N.Q with N=C3×C9 and Q=C12
extensionφ:Q→Aut NdρLabelID
(C3×C9).C12 = C9⋊C36φ: C12/C2C6 ⊆ Aut C3×C9366(C3xC9).C12324,9
(C3×C9).2C12 = C4×C9⋊C9φ: C12/C4C3 ⊆ Aut C3×C9324(C3xC9).2C12324,28
(C3×C9).3C12 = C4×C3.He3φ: C12/C4C3 ⊆ Aut C3×C91083(C3xC9).3C12324,34
(C3×C9).4C12 = C4×C27⋊C3φ: C12/C4C3 ⊆ Aut C3×C91083(C3xC9).4C12324,30
(C3×C9).5C12 = Dic3×C27φ: C12/C6C2 ⊆ Aut C3×C91082(C3xC9).5C12324,11
(C3×C9).6C12 = C9×Dic9φ: C12/C6C2 ⊆ Aut C3×C9362(C3xC9).6C12324,6

׿
×
𝔽