Extensions 1→N→G→Q→1 with N=C168 and Q=C2

Direct product G=N×Q with N=C168 and Q=C2
dρLabelID
C2×C168336C2xC168336,109

Semidirect products G=N:Q with N=C168 and Q=C2
extensionφ:Q→Aut NdρLabelID
C1681C2 = D168φ: C2/C1C2 ⊆ Aut C1681682+C168:1C2336,93
C1682C2 = C8⋊D21φ: C2/C1C2 ⊆ Aut C1681682C168:2C2336,92
C1683C2 = C3×D56φ: C2/C1C2 ⊆ Aut C1681682C168:3C2336,61
C1684C2 = C8×D21φ: C2/C1C2 ⊆ Aut C1681682C168:4C2336,90
C1685C2 = C56⋊S3φ: C2/C1C2 ⊆ Aut C1681682C168:5C2336,91
C1686C2 = C3×C56⋊C2φ: C2/C1C2 ⊆ Aut C1681682C168:6C2336,60
C1687C2 = C7×D24φ: C2/C1C2 ⊆ Aut C1681682C168:7C2336,77
C1688C2 = D7×C24φ: C2/C1C2 ⊆ Aut C1681682C168:8C2336,58
C1689C2 = C3×C8⋊D7φ: C2/C1C2 ⊆ Aut C1681682C168:9C2336,59
C16810C2 = C7×C24⋊C2φ: C2/C1C2 ⊆ Aut C1681682C168:10C2336,76
C16811C2 = D8×C21φ: C2/C1C2 ⊆ Aut C1681682C168:11C2336,111
C16812C2 = S3×C56φ: C2/C1C2 ⊆ Aut C1681682C168:12C2336,74
C16813C2 = C7×C8⋊S3φ: C2/C1C2 ⊆ Aut C1681682C168:13C2336,75
C16814C2 = SD16×C21φ: C2/C1C2 ⊆ Aut C1681682C168:14C2336,112
C16815C2 = M4(2)×C21φ: C2/C1C2 ⊆ Aut C1681682C168:15C2336,110

Non-split extensions G=N.Q with N=C168 and Q=C2
extensionφ:Q→Aut NdρLabelID
C168.1C2 = Dic84φ: C2/C1C2 ⊆ Aut C1683362-C168.1C2336,94
C168.2C2 = C3×Dic28φ: C2/C1C2 ⊆ Aut C1683362C168.2C2336,62
C168.3C2 = C21⋊C16φ: C2/C1C2 ⊆ Aut C1683362C168.3C2336,5
C168.4C2 = C7×Dic12φ: C2/C1C2 ⊆ Aut C1683362C168.4C2336,78
C168.5C2 = C3×C7⋊C16φ: C2/C1C2 ⊆ Aut C1683362C168.5C2336,4
C168.6C2 = Q16×C21φ: C2/C1C2 ⊆ Aut C1683362C168.6C2336,113
C168.7C2 = C7×C3⋊C16φ: C2/C1C2 ⊆ Aut C1683362C168.7C2336,3

׿
×
𝔽