Copied to
clipboard

G = C7×C9⋊C6order 378 = 2·33·7

Direct product of C7 and C9⋊C6

direct product, metacyclic, supersoluble, monomial

Aliases: C7×C9⋊C6, C9⋊C42, D9⋊C21, C637C6, 3- 1+2⋊C14, (C7×D9)⋊3C3, C32.(S3×C7), C3.3(S3×C21), (C3×C21).2S3, C21.17(C3×S3), (C7×3- 1+2)⋊2C2, SmallGroup(378,35)

Series: Derived Chief Lower central Upper central

C1C9 — C7×C9⋊C6
C1C3C9C63C7×3- 1+2 — C7×C9⋊C6
C9 — C7×C9⋊C6
C1C7

Generators and relations for C7×C9⋊C6
 G = < a,b,c | a7=b9=c6=1, ab=ba, ac=ca, cbc-1=b2 >

9C2
3C3
3S3
9C6
2C9
9C14
3C21
3C3×S3
3S3×C7
9C42
2C63
3S3×C21

Smallest permutation representation of C7×C9⋊C6
On 63 points
Generators in S63
(1 62 53 44 35 26 17)(2 63 54 45 36 27 18)(3 55 46 37 28 19 10)(4 56 47 38 29 20 11)(5 57 48 39 30 21 12)(6 58 49 40 31 22 13)(7 59 50 41 32 23 14)(8 60 51 42 33 24 15)(9 61 52 43 34 25 16)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(2 6 8 9 5 3)(4 7)(10 18 13 15 16 12)(11 14)(19 27 22 24 25 21)(20 23)(28 36 31 33 34 30)(29 32)(37 45 40 42 43 39)(38 41)(46 54 49 51 52 48)(47 50)(55 63 58 60 61 57)(56 59)

G:=sub<Sym(63)| (1,62,53,44,35,26,17)(2,63,54,45,36,27,18)(3,55,46,37,28,19,10)(4,56,47,38,29,20,11)(5,57,48,39,30,21,12)(6,58,49,40,31,22,13)(7,59,50,41,32,23,14)(8,60,51,42,33,24,15)(9,61,52,43,34,25,16), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (2,6,8,9,5,3)(4,7)(10,18,13,15,16,12)(11,14)(19,27,22,24,25,21)(20,23)(28,36,31,33,34,30)(29,32)(37,45,40,42,43,39)(38,41)(46,54,49,51,52,48)(47,50)(55,63,58,60,61,57)(56,59)>;

G:=Group( (1,62,53,44,35,26,17)(2,63,54,45,36,27,18)(3,55,46,37,28,19,10)(4,56,47,38,29,20,11)(5,57,48,39,30,21,12)(6,58,49,40,31,22,13)(7,59,50,41,32,23,14)(8,60,51,42,33,24,15)(9,61,52,43,34,25,16), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (2,6,8,9,5,3)(4,7)(10,18,13,15,16,12)(11,14)(19,27,22,24,25,21)(20,23)(28,36,31,33,34,30)(29,32)(37,45,40,42,43,39)(38,41)(46,54,49,51,52,48)(47,50)(55,63,58,60,61,57)(56,59) );

G=PermutationGroup([[(1,62,53,44,35,26,17),(2,63,54,45,36,27,18),(3,55,46,37,28,19,10),(4,56,47,38,29,20,11),(5,57,48,39,30,21,12),(6,58,49,40,31,22,13),(7,59,50,41,32,23,14),(8,60,51,42,33,24,15),(9,61,52,43,34,25,16)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(2,6,8,9,5,3),(4,7),(10,18,13,15,16,12),(11,14),(19,27,22,24,25,21),(20,23),(28,36,31,33,34,30),(29,32),(37,45,40,42,43,39),(38,41),(46,54,49,51,52,48),(47,50),(55,63,58,60,61,57),(56,59)]])

70 conjugacy classes

class 1  2 3A3B3C6A6B7A···7F9A9B9C14A···14F21A···21F21G···21R42A···42L63A···63R
order12333667···799914···1421···2121···2142···4263···63
size19233991···16669···92···23···39···96···6

70 irreducible representations

dim11111111222266
type++++
imageC1C2C3C6C7C14C21C42S3C3×S3S3×C7S3×C21C9⋊C6C7×C9⋊C6
kernelC7×C9⋊C6C7×3- 1+2C7×D9C63C9⋊C63- 1+2D9C9C3×C21C21C32C3C7C1
# reps11226612121261216

Matrix representation of C7×C9⋊C6 in GL6(𝔽127)

800000
080000
008000
000800
000080
000008
,
00012600
00112600
00000126
00001126
12610000
12600000
,
010000
100000
000001
000010
00112600
00012600

G:=sub<GL(6,GF(127))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[0,0,0,0,126,126,0,0,0,0,1,0,0,1,0,0,0,0,126,126,0,0,0,0,0,0,0,1,0,0,0,0,126,126,0,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,126,126,0,0,0,1,0,0,0,0,1,0,0,0] >;

C7×C9⋊C6 in GAP, Magma, Sage, TeX

C_7\times C_9\rtimes C_6
% in TeX

G:=Group("C7xC9:C6");
// GroupNames label

G:=SmallGroup(378,35);
// by ID

G=gap.SmallGroup(378,35);
# by ID

G:=PCGroup([5,-2,-3,-7,-3,-3,4203,1688,138,6304]);
// Polycyclic

G:=Group<a,b,c|a^7=b^9=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations

Export

Subgroup lattice of C7×C9⋊C6 in TeX

׿
×
𝔽