Extensions 1→N→G→Q→1 with N=C15 and Q=C2xC12

Direct product G=NxQ with N=C15 and Q=C2xC12
dρLabelID
C6xC60360C6xC60360,115

Semidirect products G=N:Q with N=C15 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
C15:(C2xC12) = C3xS3xF5φ: C2xC12/C3C2xC4 ⊆ Aut C15308C15:(C2xC12)360,126
C15:2(C2xC12) = C6xC3:F5φ: C2xC12/C6C4 ⊆ Aut C15604C15:2(C2xC12)360,146
C15:3(C2xC12) = C3xC6xF5φ: C2xC12/C6C4 ⊆ Aut C1590C15:3(C2xC12)360,145
C15:4(C2xC12) = C3xD5xDic3φ: C2xC12/C6C22 ⊆ Aut C15604C15:4(C2xC12)360,58
C15:5(C2xC12) = C3xS3xDic5φ: C2xC12/C6C22 ⊆ Aut C151204C15:5(C2xC12)360,59
C15:6(C2xC12) = C3xD30.C2φ: C2xC12/C6C22 ⊆ Aut C151204C15:6(C2xC12)360,60
C15:7(C2xC12) = C12xD15φ: C2xC12/C12C2 ⊆ Aut C151202C15:7(C2xC12)360,101
C15:8(C2xC12) = D5xC3xC12φ: C2xC12/C12C2 ⊆ Aut C15180C15:8(C2xC12)360,91
C15:9(C2xC12) = S3xC60φ: C2xC12/C12C2 ⊆ Aut C151202C15:9(C2xC12)360,96
C15:10(C2xC12) = C6xDic15φ: C2xC12/C2xC6C2 ⊆ Aut C15120C15:10(C2xC12)360,103
C15:11(C2xC12) = C3xC6xDic5φ: C2xC12/C2xC6C2 ⊆ Aut C15360C15:11(C2xC12)360,93
C15:12(C2xC12) = Dic3xC30φ: C2xC12/C2xC6C2 ⊆ Aut C15120C15:12(C2xC12)360,98

Non-split extensions G=N.Q with N=C15 and Q=C2xC12
extensionφ:Q→Aut NdρLabelID
C15.(C2xC12) = C18xF5φ: C2xC12/C6C4 ⊆ Aut C15904C15.(C2xC12)360,43
C15.2(C2xC12) = D5xC36φ: C2xC12/C12C2 ⊆ Aut C151802C15.2(C2xC12)360,16
C15.3(C2xC12) = C18xDic5φ: C2xC12/C2xC6C2 ⊆ Aut C15360C15.3(C2xC12)360,18

׿
x
:
Z
F
o
wr
Q
<