Copied to
clipboard

G = C5xC5:C16order 400 = 24·52

Direct product of C5 and C5:C16

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C5xC5:C16, C5:C80, C10.C40, C52:2C16, C20.2C20, C20.16F5, C4.2(C5xF5), C10.6(C5:C8), (C5xC10).2C8, (C5xC20).5C4, C5:2C8.2C10, C2.(C5xC5:C8), (C5xC5:2C8).1C2, SmallGroup(400,56)

Series: Derived Chief Lower central Upper central

C1C5 — C5xC5:C16
C1C5C10C20C5:2C8C5xC5:2C8 — C5xC5:C16
C5 — C5xC5:C16
C1C20

Generators and relations for C5xC5:C16
 G = < a,b,c | a5=b5=c16=1, ab=ba, ac=ca, cbc-1=b3 >

Subgroups: 48 in 23 conjugacy classes, 16 normal (all characteristic)
Quotients: C1, C2, C4, C5, C8, C10, C16, C20, F5, C40, C5:C8, C80, C5:C16, C5xF5, C5xC5:C8, C5xC5:C16
4C5
4C10
5C8
4C20
5C16
5C40
5C80

Smallest permutation representation of C5xC5:C16
On 80 points
Generators in S80
(1 39 69 28 58)(2 40 70 29 59)(3 41 71 30 60)(4 42 72 31 61)(5 43 73 32 62)(6 44 74 17 63)(7 45 75 18 64)(8 46 76 19 49)(9 47 77 20 50)(10 48 78 21 51)(11 33 79 22 52)(12 34 80 23 53)(13 35 65 24 54)(14 36 66 25 55)(15 37 67 26 56)(16 38 68 27 57)
(1 39 69 28 58)(2 29 40 59 70)(3 60 30 71 41)(4 72 61 42 31)(5 43 73 32 62)(6 17 44 63 74)(7 64 18 75 45)(8 76 49 46 19)(9 47 77 20 50)(10 21 48 51 78)(11 52 22 79 33)(12 80 53 34 23)(13 35 65 24 54)(14 25 36 55 66)(15 56 26 67 37)(16 68 57 38 27)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,39,69,28,58)(2,40,70,29,59)(3,41,71,30,60)(4,42,72,31,61)(5,43,73,32,62)(6,44,74,17,63)(7,45,75,18,64)(8,46,76,19,49)(9,47,77,20,50)(10,48,78,21,51)(11,33,79,22,52)(12,34,80,23,53)(13,35,65,24,54)(14,36,66,25,55)(15,37,67,26,56)(16,38,68,27,57), (1,39,69,28,58)(2,29,40,59,70)(3,60,30,71,41)(4,72,61,42,31)(5,43,73,32,62)(6,17,44,63,74)(7,64,18,75,45)(8,76,49,46,19)(9,47,77,20,50)(10,21,48,51,78)(11,52,22,79,33)(12,80,53,34,23)(13,35,65,24,54)(14,25,36,55,66)(15,56,26,67,37)(16,68,57,38,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;

G:=Group( (1,39,69,28,58)(2,40,70,29,59)(3,41,71,30,60)(4,42,72,31,61)(5,43,73,32,62)(6,44,74,17,63)(7,45,75,18,64)(8,46,76,19,49)(9,47,77,20,50)(10,48,78,21,51)(11,33,79,22,52)(12,34,80,23,53)(13,35,65,24,54)(14,36,66,25,55)(15,37,67,26,56)(16,38,68,27,57), (1,39,69,28,58)(2,29,40,59,70)(3,60,30,71,41)(4,72,61,42,31)(5,43,73,32,62)(6,17,44,63,74)(7,64,18,75,45)(8,76,49,46,19)(9,47,77,20,50)(10,21,48,51,78)(11,52,22,79,33)(12,80,53,34,23)(13,35,65,24,54)(14,25,36,55,66)(15,56,26,67,37)(16,68,57,38,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,39,69,28,58),(2,40,70,29,59),(3,41,71,30,60),(4,42,72,31,61),(5,43,73,32,62),(6,44,74,17,63),(7,45,75,18,64),(8,46,76,19,49),(9,47,77,20,50),(10,48,78,21,51),(11,33,79,22,52),(12,34,80,23,53),(13,35,65,24,54),(14,36,66,25,55),(15,37,67,26,56),(16,38,68,27,57)], [(1,39,69,28,58),(2,29,40,59,70),(3,60,30,71,41),(4,72,61,42,31),(5,43,73,32,62),(6,17,44,63,74),(7,64,18,75,45),(8,76,49,46,19),(9,47,77,20,50),(10,21,48,51,78),(11,52,22,79,33),(12,80,53,34,23),(13,35,65,24,54),(14,25,36,55,66),(15,56,26,67,37),(16,68,57,38,27)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])

100 conjugacy classes

class 1  2 4A4B5A5B5C5D5E···5I8A8B8C8D10A10B10C10D10E···10I16A···16H20A···20H20I···20R40A···40P80A···80AF
order124455555···588881010101010···1016···1620···2020···2040···4080···80
size111111114···4555511114···45···51···14···45···55···5

100 irreducible representations

dim1111111111444444
type+++-
imageC1C2C4C5C8C10C16C20C40C80F5C5:C8C5:C16C5xF5C5xC5:C8C5xC5:C16
kernelC5xC5:C16C5xC5:2C8C5xC20C5:C16C5xC10C5:2C8C52C20C10C5C20C10C5C4C2C1
# reps112444881632112448

Matrix representation of C5xC5:C16 in GL5(F241)

870000
087000
008700
000870
000087
,
10000
087000
08820500
0980980
01890091
,
760000
024002040
0002401
00110
00010

G:=sub<GL(5,GF(241))| [87,0,0,0,0,0,87,0,0,0,0,0,87,0,0,0,0,0,87,0,0,0,0,0,87],[1,0,0,0,0,0,87,88,98,189,0,0,205,0,0,0,0,0,98,0,0,0,0,0,91],[76,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,204,240,1,1,0,0,1,0,0] >;

C5xC5:C16 in GAP, Magma, Sage, TeX

C_5\times C_5\rtimes C_{16}
% in TeX

G:=Group("C5xC5:C16");
// GroupNames label

G:=SmallGroup(400,56);
// by ID

G=gap.SmallGroup(400,56);
# by ID

G:=PCGroup([6,-2,-5,-2,-2,-2,-5,60,50,69,5765,1169]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^16=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C5xC5:C16 in TeX

׿
x
:
Z
F
o
wr
Q
<