Extensions 1→N→G→Q→1 with N=C5×C52C8 and Q=C2

Direct product G=N×Q with N=C5×C52C8 and Q=C2
dρLabelID
C10×C52C880C10xC5:2C8400,81

Semidirect products G=N:Q with N=C5×C52C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C52C8)⋊1C2 = C5⋊D40φ: C2/C1C2 ⊆ Out C5×C52C8404+(C5xC5:2C8):1C2400,65
(C5×C52C8)⋊2C2 = C523SD16φ: C2/C1C2 ⊆ Out C5×C52C8804-(C5xC5:2C8):2C2400,67
(C5×C52C8)⋊3C2 = C524SD16φ: C2/C1C2 ⊆ Out C5×C52C8404+(C5xC5:2C8):3C2400,68
(C5×C52C8)⋊4C2 = D5×C52C8φ: C2/C1C2 ⊆ Out C5×C52C8804(C5xC5:2C8):4C2400,60
(C5×C52C8)⋊5C2 = C20.29D10φ: C2/C1C2 ⊆ Out C5×C52C8404(C5xC5:2C8):5C2400,61
(C5×C52C8)⋊6C2 = C20.30D10φ: C2/C1C2 ⊆ Out C5×C52C8804(C5xC5:2C8):6C2400,62
(C5×C52C8)⋊7C2 = C20.31D10φ: C2/C1C2 ⊆ Out C5×C52C8404(C5xC5:2C8):7C2400,63
(C5×C52C8)⋊8C2 = C5×D4⋊D5φ: C2/C1C2 ⊆ Out C5×C52C8404(C5xC5:2C8):8C2400,87
(C5×C52C8)⋊9C2 = C5×D4.D5φ: C2/C1C2 ⊆ Out C5×C52C8404(C5xC5:2C8):9C2400,88
(C5×C52C8)⋊10C2 = C5×Q8⋊D5φ: C2/C1C2 ⊆ Out C5×C52C8804(C5xC5:2C8):10C2400,89
(C5×C52C8)⋊11C2 = C5×C8⋊D5φ: C2/C1C2 ⊆ Out C5×C52C8802(C5xC5:2C8):11C2400,77
(C5×C52C8)⋊12C2 = C5×C4.Dic5φ: C2/C1C2 ⊆ Out C5×C52C8402(C5xC5:2C8):12C2400,82
(C5×C52C8)⋊13C2 = D5×C40φ: trivial image802(C5xC5:2C8):13C2400,76

Non-split extensions G=N.Q with N=C5×C52C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×C52C8).1C2 = C5×C5⋊C16φ: C2/C1C2 ⊆ Out C5×C52C8804(C5xC5:2C8).1C2400,56
(C5×C52C8).2C2 = C523Q16φ: C2/C1C2 ⊆ Out C5×C52C8804-(C5xC5:2C8).2C2400,70
(C5×C52C8).3C2 = C523C16φ: C2/C1C2 ⊆ Out C5×C52C8804(C5xC5:2C8).3C2400,57
(C5×C52C8).4C2 = C5×C5⋊Q16φ: C2/C1C2 ⊆ Out C5×C52C8804(C5xC5:2C8).4C2400,90

׿
×
𝔽