Extensions 1→N→G→Q→1 with N=C5xC5:2C8 and Q=C2

Direct product G=NxQ with N=C5xC5:2C8 and Q=C2
dρLabelID
C10xC5:2C880C10xC5:2C8400,81

Semidirect products G=N:Q with N=C5xC5:2C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xC5:2C8):1C2 = C5:D40φ: C2/C1C2 ⊆ Out C5xC5:2C8404+(C5xC5:2C8):1C2400,65
(C5xC5:2C8):2C2 = C52:3SD16φ: C2/C1C2 ⊆ Out C5xC5:2C8804-(C5xC5:2C8):2C2400,67
(C5xC5:2C8):3C2 = C52:4SD16φ: C2/C1C2 ⊆ Out C5xC5:2C8404+(C5xC5:2C8):3C2400,68
(C5xC5:2C8):4C2 = D5xC5:2C8φ: C2/C1C2 ⊆ Out C5xC5:2C8804(C5xC5:2C8):4C2400,60
(C5xC5:2C8):5C2 = C20.29D10φ: C2/C1C2 ⊆ Out C5xC5:2C8404(C5xC5:2C8):5C2400,61
(C5xC5:2C8):6C2 = C20.30D10φ: C2/C1C2 ⊆ Out C5xC5:2C8804(C5xC5:2C8):6C2400,62
(C5xC5:2C8):7C2 = C20.31D10φ: C2/C1C2 ⊆ Out C5xC5:2C8404(C5xC5:2C8):7C2400,63
(C5xC5:2C8):8C2 = C5xD4:D5φ: C2/C1C2 ⊆ Out C5xC5:2C8404(C5xC5:2C8):8C2400,87
(C5xC5:2C8):9C2 = C5xD4.D5φ: C2/C1C2 ⊆ Out C5xC5:2C8404(C5xC5:2C8):9C2400,88
(C5xC5:2C8):10C2 = C5xQ8:D5φ: C2/C1C2 ⊆ Out C5xC5:2C8804(C5xC5:2C8):10C2400,89
(C5xC5:2C8):11C2 = C5xC8:D5φ: C2/C1C2 ⊆ Out C5xC5:2C8802(C5xC5:2C8):11C2400,77
(C5xC5:2C8):12C2 = C5xC4.Dic5φ: C2/C1C2 ⊆ Out C5xC5:2C8402(C5xC5:2C8):12C2400,82
(C5xC5:2C8):13C2 = D5xC40φ: trivial image802(C5xC5:2C8):13C2400,76

Non-split extensions G=N.Q with N=C5xC5:2C8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xC5:2C8).1C2 = C5xC5:C16φ: C2/C1C2 ⊆ Out C5xC5:2C8804(C5xC5:2C8).1C2400,56
(C5xC5:2C8).2C2 = C52:3Q16φ: C2/C1C2 ⊆ Out C5xC5:2C8804-(C5xC5:2C8).2C2400,70
(C5xC5:2C8).3C2 = C52:3C16φ: C2/C1C2 ⊆ Out C5xC5:2C8804(C5xC5:2C8).3C2400,57
(C5xC5:2C8).4C2 = C5xC5:Q16φ: C2/C1C2 ⊆ Out C5xC5:2C8804(C5xC5:2C8).4C2400,90

׿
x
:
Z
F
o
wr
Q
<