metabelian, supersoluble, monomial
Aliases: D10⋊3D10, Dic5⋊2D10, C102⋊2C22, C5⋊D5⋊3D4, C5⋊3(D4×D5), C22⋊2D52, C5⋊D4⋊2D5, C52⋊7(C2×D4), (C2×C10)⋊2D10, C5⋊D20⋊6C2, (D5×C10)⋊4C22, Dic5⋊2D5⋊3C2, (C5×C10).18C23, (C5×Dic5)⋊2C22, C10.18(C22×D5), (C2×D52)⋊4C2, C2.18(C2×D52), (C5×C5⋊D4)⋊4C2, (C2×C5⋊D5)⋊4C22, (C22×C5⋊D5)⋊2C2, SmallGroup(400,180)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D10⋊D10
G = < a,b,c,d | a10=b2=c10=d2=1, bab=dad=a-1, ac=ca, cbc-1=a5b, dbd=a3b, dcd=c-1 >
Subgroups: 1100 in 140 conjugacy classes, 34 normal (12 characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2×C4, D4, C23, D5, C10, C10, C2×D4, Dic5, C20, D10, D10, C2×C10, C2×C10, C52, C4×D5, D20, C5⋊D4, C5⋊D4, C5×D4, C22×D5, C5×D5, C5⋊D5, C5⋊D5, C5×C10, C5×C10, D4×D5, C5×Dic5, D52, D5×C10, C2×C5⋊D5, C2×C5⋊D5, C102, Dic5⋊2D5, C5⋊D20, C5×C5⋊D4, C2×D52, C22×C5⋊D5, D10⋊D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C22×D5, D4×D5, D52, C2×D52, D10⋊D10
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)
(1 12)(2 11)(3 20)(4 19)(5 18)(6 17)(7 16)(8 15)(9 14)(10 13)
(1 5 9 3 7)(2 6 10 4 8)(11 12 13 14 15 16 17 18 19 20)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 20)(16 19)(17 18)
G:=sub<Sym(20)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20), (1,12)(2,11)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13), (1,5,9,3,7)(2,6,10,4,8)(11,12,13,14,15,16,17,18,19,20), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,20)(16,19)(17,18)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20), (1,12)(2,11)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13), (1,5,9,3,7)(2,6,10,4,8)(11,12,13,14,15,16,17,18,19,20), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,20)(16,19)(17,18) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20)], [(1,12),(2,11),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13)], [(1,5,9,3,7),(2,6,10,4,8),(11,12,13,14,15,16,17,18,19,20)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,20),(16,19),(17,18)]])
G:=TransitiveGroup(20,106);
46 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 10A | 10B | 10C | 10D | 10E | ··· | 10T | 10U | 10V | 10W | 10X | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | 10 | 10 | 25 | 25 | 50 | 10 | 10 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D10 | D4×D5 | D52 | C2×D52 | D10⋊D10 |
kernel | D10⋊D10 | Dic5⋊2D5 | C5⋊D20 | C5×C5⋊D4 | C2×D52 | C22×C5⋊D5 | C5⋊D5 | C5⋊D4 | Dic5 | D10 | C2×C10 | C5 | C22 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 |
Matrix representation of D10⋊D10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 6 | 0 | 0 |
0 | 0 | 35 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 2 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 35 | 40 | 0 | 0 |
0 | 0 | 35 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
40 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 34 |
0 | 0 | 0 | 0 | 7 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
40 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 40 |
0 | 0 | 0 | 0 | 7 | 34 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,35,35,0,0,0,0,6,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,2,40,0,0,0,0,0,0,35,35,0,0,0,0,40,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,7,0,0,0,0,34,40],[1,40,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,7,7,0,0,0,0,40,34] >;
D10⋊D10 in GAP, Magma, Sage, TeX
D_{10}\rtimes D_{10}
% in TeX
G:=Group("D10:D10");
// GroupNames label
G:=SmallGroup(400,180);
// by ID
G=gap.SmallGroup(400,180);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,218,116,970,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=c^10=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^5*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations