Extensions 1→N→G→Q→1 with N=C14 and Q=D14

Direct product G=N×Q with N=C14 and Q=D14
dρLabelID
D7×C2×C1456D7xC2xC14392,42

Semidirect products G=N:Q with N=C14 and Q=D14
extensionφ:Q→Aut NdρLabelID
C141D14 = C2×D72φ: D14/D7C2 ⊆ Aut C14284+C14:1D14392,41
C142D14 = C22×C7⋊D7φ: D14/C14C2 ⊆ Aut C14196C14:2D14392,43

Non-split extensions G=N.Q with N=C14 and Q=D14
extensionφ:Q→Aut NdρLabelID
C14.1D14 = D7×Dic7φ: D14/D7C2 ⊆ Aut C14564-C14.1D14392,18
C14.2D14 = Dic72D7φ: D14/D7C2 ⊆ Aut C14284+C14.2D14392,19
C14.3D14 = C722D4φ: D14/D7C2 ⊆ Aut C14564-C14.3D14392,20
C14.4D14 = C7⋊D28φ: D14/D7C2 ⊆ Aut C14284+C14.4D14392,21
C14.5D14 = C722Q8φ: D14/D7C2 ⊆ Aut C14564-C14.5D14392,22
C14.6D14 = Dic98φ: D14/C14C2 ⊆ Aut C143922-C14.6D14392,3
C14.7D14 = C4×D49φ: D14/C14C2 ⊆ Aut C141962C14.7D14392,4
C14.8D14 = D196φ: D14/C14C2 ⊆ Aut C141962+C14.8D14392,5
C14.9D14 = C2×Dic49φ: D14/C14C2 ⊆ Aut C14392C14.9D14392,6
C14.10D14 = C49⋊D4φ: D14/C14C2 ⊆ Aut C141962C14.10D14392,7
C14.11D14 = C22×D49φ: D14/C14C2 ⊆ Aut C14196C14.11D14392,12
C14.12D14 = C724Q8φ: D14/C14C2 ⊆ Aut C14392C14.12D14392,28
C14.13D14 = C4×C7⋊D7φ: D14/C14C2 ⊆ Aut C14196C14.13D14392,29
C14.14D14 = C28⋊D7φ: D14/C14C2 ⊆ Aut C14196C14.14D14392,30
C14.15D14 = C2×C7⋊Dic7φ: D14/C14C2 ⊆ Aut C14392C14.15D14392,31
C14.16D14 = C727D4φ: D14/C14C2 ⊆ Aut C14196C14.16D14392,32
C14.17D14 = C7×Dic14central extension (φ=1)562C14.17D14392,23
C14.18D14 = D7×C28central extension (φ=1)562C14.18D14392,24
C14.19D14 = C7×D28central extension (φ=1)562C14.19D14392,25
C14.20D14 = C14×Dic7central extension (φ=1)56C14.20D14392,26
C14.21D14 = C7×C7⋊D4central extension (φ=1)282C14.21D14392,27

׿
×
𝔽