direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×D11, D33⋊C2, C3⋊1D22, C11⋊1D6, C33⋊C22, (S3×C11)⋊C2, (C3×D11)⋊C2, SmallGroup(132,5)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — S3×D11 |
Generators and relations for S3×D11
G = < a,b,c,d | a3=b2=c11=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of S3×D11
class | 1 | 2A | 2B | 2C | 3 | 6 | 11A | 11B | 11C | 11D | 11E | 22A | 22B | 22C | 22D | 22E | 33A | 33B | 33C | 33D | 33E | |
size | 1 | 3 | 11 | 33 | 2 | 22 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 0 | -2 | 0 | -1 | 1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ6 | 2 | 0 | 2 | 0 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | -2 | 0 | 0 | 2 | 0 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | orthogonal lifted from D22 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 0 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 0 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | orthogonal lifted from D22 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 0 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 0 | ζ119+ζ112 | ζ116+ζ115 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | orthogonal lifted from D22 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 0 | ζ118+ζ113 | ζ119+ζ112 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | ζ1110+ζ11 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | orthogonal lifted from D22 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 0 | ζ117+ζ114 | ζ1110+ζ11 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ15 | 2 | -2 | 0 | 0 | 2 | 0 | ζ116+ζ115 | ζ117+ζ114 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | orthogonal lifted from D22 |
ρ16 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1110+ζ11 | ζ118+ζ113 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ17 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ119+2ζ112 | 2ζ116+2ζ115 | 2ζ1110+2ζ11 | 2ζ118+2ζ113 | 2ζ117+2ζ114 | 0 | 0 | 0 | 0 | 0 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ117-ζ114 | -ζ119-ζ112 | orthogonal faithful |
ρ18 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ116+2ζ115 | 2ζ117+2ζ114 | 2ζ118+2ζ113 | 2ζ119+2ζ112 | 2ζ1110+2ζ11 | 0 | 0 | 0 | 0 | 0 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ1110-ζ11 | -ζ116-ζ115 | orthogonal faithful |
ρ19 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ118+2ζ113 | 2ζ119+2ζ112 | 2ζ117+2ζ114 | 2ζ1110+2ζ11 | 2ζ116+2ζ115 | 0 | 0 | 0 | 0 | 0 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ117-ζ114 | -ζ116-ζ115 | -ζ118-ζ113 | orthogonal faithful |
ρ20 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1110+2ζ11 | 2ζ118+2ζ113 | 2ζ116+2ζ115 | 2ζ117+2ζ114 | 2ζ119+2ζ112 | 0 | 0 | 0 | 0 | 0 | -ζ117-ζ114 | -ζ118-ζ113 | -ζ116-ζ115 | -ζ119-ζ112 | -ζ1110-ζ11 | orthogonal faithful |
ρ21 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ117+2ζ114 | 2ζ1110+2ζ11 | 2ζ119+2ζ112 | 2ζ116+2ζ115 | 2ζ118+2ζ113 | 0 | 0 | 0 | 0 | 0 | -ζ116-ζ115 | -ζ1110-ζ11 | -ζ119-ζ112 | -ζ118-ζ113 | -ζ117-ζ114 | orthogonal faithful |
(1 21 32)(2 22 33)(3 12 23)(4 13 24)(5 14 25)(6 15 26)(7 16 27)(8 17 28)(9 18 29)(10 19 30)(11 20 31)
(12 23)(13 24)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)
G:=sub<Sym(33)| (1,21,32)(2,22,33)(3,12,23)(4,13,24)(5,14,25)(6,15,26)(7,16,27)(8,17,28)(9,18,29)(10,19,30)(11,20,31), (12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)>;
G:=Group( (1,21,32)(2,22,33)(3,12,23)(4,13,24)(5,14,25)(6,15,26)(7,16,27)(8,17,28)(9,18,29)(10,19,30)(11,20,31), (12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32) );
G=PermutationGroup([[(1,21,32),(2,22,33),(3,12,23),(4,13,24),(5,14,25),(6,15,26),(7,16,27),(8,17,28),(9,18,29),(10,19,30),(11,20,31)], [(12,23),(13,24),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32)]])
S3×D11 is a maximal subgroup of
D33⋊S3
S3×D11 is a maximal quotient of D33⋊C4 C33⋊D4 C3⋊D44 C11⋊D12 C33⋊Q8 D33⋊S3
Matrix representation of S3×D11 ►in GL4(𝔽67) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 66 |
0 | 0 | 1 | 66 |
66 | 0 | 0 | 0 |
0 | 66 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
66 | 24 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(67))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,66,66],[66,0,0,0,0,66,0,0,0,0,0,1,0,0,1,0],[0,66,0,0,1,24,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;
S3×D11 in GAP, Magma, Sage, TeX
S_3\times D_{11}
% in TeX
G:=Group("S3xD11");
// GroupNames label
G:=SmallGroup(132,5);
// by ID
G=gap.SmallGroup(132,5);
# by ID
G:=PCGroup([4,-2,-2,-3,-11,54,1923]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^11=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of S3×D11 in TeX
Character table of S3×D11 in TeX