Extensions 1→N→G→Q→1 with N=D5xC10 and Q=C4

Direct product G=NxQ with N=D5xC10 and Q=C4
dρLabelID
D5xC2xC2080D5xC2xC20400,182

Semidirect products G=N:Q with N=D5xC10 and Q=C4
extensionφ:Q→Out NdρLabelID
(D5xC10):1C4 = D5.D20φ: C4/C1C4 ⊆ Out D5xC10408+(D5xC10):1C4400,118
(D5xC10):2C4 = D10:F5φ: C4/C1C4 ⊆ Out D5xC10208+(D5xC10):2C4400,125
(D5xC10):3C4 = C2xD5xF5φ: C4/C1C4 ⊆ Out D5xC10408+(D5xC10):3C4400,209
(D5xC10):4C4 = C2xD5:F5φ: C4/C1C4 ⊆ Out D5xC10208+(D5xC10):4C4400,210
(D5xC10):5C4 = D10:Dic5φ: C4/C2C2 ⊆ Out D5xC1080(D5xC10):5C4400,72
(D5xC10):6C4 = C5xD10:C4φ: C4/C2C2 ⊆ Out D5xC1080(D5xC10):6C4400,86
(D5xC10):7C4 = C2xD5xDic5φ: C4/C2C2 ⊆ Out D5xC1080(D5xC10):7C4400,172
(D5xC10):8C4 = C5xC22:F5φ: C4/C2C2 ⊆ Out D5xC10404(D5xC10):8C4400,141
(D5xC10):9C4 = D10.D10φ: C4/C2C2 ⊆ Out D5xC10404(D5xC10):9C4400,148
(D5xC10):10C4 = F5xC2xC10φ: C4/C2C2 ⊆ Out D5xC1080(D5xC10):10C4400,214
(D5xC10):11C4 = C22xD5.D5φ: C4/C2C2 ⊆ Out D5xC1080(D5xC10):11C4400,215

Non-split extensions G=N.Q with N=D5xC10 and Q=C4
extensionφ:Q→Out NdρLabelID
(D5xC10).1C4 = D5xC5:C8φ: C4/C1C4 ⊆ Out D5xC10808-(D5xC10).1C4400,120
(D5xC10).2C4 = D10.F5φ: C4/C1C4 ⊆ Out D5xC10808-(D5xC10).2C4400,122
(D5xC10).3C4 = D10.2F5φ: C4/C1C4 ⊆ Out D5xC10808-(D5xC10).3C4400,127
(D5xC10).4C4 = C52:4M4(2)φ: C4/C1C4 ⊆ Out D5xC10808-(D5xC10).4C4400,128
(D5xC10).5C4 = D5xC5:2C8φ: C4/C2C2 ⊆ Out D5xC10804(D5xC10).5C4400,60
(D5xC10).6C4 = C20.30D10φ: C4/C2C2 ⊆ Out D5xC10804(D5xC10).6C4400,62
(D5xC10).7C4 = C5xC8:D5φ: C4/C2C2 ⊆ Out D5xC10802(D5xC10).7C4400,77
(D5xC10).8C4 = C5xD5:C8φ: C4/C2C2 ⊆ Out D5xC10804(D5xC10).8C4400,135
(D5xC10).9C4 = C5xC4.F5φ: C4/C2C2 ⊆ Out D5xC10804(D5xC10).9C4400,136
(D5xC10).10C4 = C20.14F5φ: C4/C2C2 ⊆ Out D5xC10804(D5xC10).10C4400,142
(D5xC10).11C4 = C20.12F5φ: C4/C2C2 ⊆ Out D5xC10804(D5xC10).11C4400,143
(D5xC10).12C4 = D5xC40φ: trivial image802(D5xC10).12C4400,76

׿
x
:
Z
F
o
wr
Q
<