Extensions 1→N→G→Q→1 with N=D5×C10 and Q=C4

Direct product G=N×Q with N=D5×C10 and Q=C4
dρLabelID
D5×C2×C2080D5xC2xC20400,182

Semidirect products G=N:Q with N=D5×C10 and Q=C4
extensionφ:Q→Out NdρLabelID
(D5×C10)⋊1C4 = D5.D20φ: C4/C1C4 ⊆ Out D5×C10408+(D5xC10):1C4400,118
(D5×C10)⋊2C4 = D10⋊F5φ: C4/C1C4 ⊆ Out D5×C10208+(D5xC10):2C4400,125
(D5×C10)⋊3C4 = C2×D5×F5φ: C4/C1C4 ⊆ Out D5×C10408+(D5xC10):3C4400,209
(D5×C10)⋊4C4 = C2×D5⋊F5φ: C4/C1C4 ⊆ Out D5×C10208+(D5xC10):4C4400,210
(D5×C10)⋊5C4 = D10⋊Dic5φ: C4/C2C2 ⊆ Out D5×C1080(D5xC10):5C4400,72
(D5×C10)⋊6C4 = C5×D10⋊C4φ: C4/C2C2 ⊆ Out D5×C1080(D5xC10):6C4400,86
(D5×C10)⋊7C4 = C2×D5×Dic5φ: C4/C2C2 ⊆ Out D5×C1080(D5xC10):7C4400,172
(D5×C10)⋊8C4 = C5×C22⋊F5φ: C4/C2C2 ⊆ Out D5×C10404(D5xC10):8C4400,141
(D5×C10)⋊9C4 = D10.D10φ: C4/C2C2 ⊆ Out D5×C10404(D5xC10):9C4400,148
(D5×C10)⋊10C4 = F5×C2×C10φ: C4/C2C2 ⊆ Out D5×C1080(D5xC10):10C4400,214
(D5×C10)⋊11C4 = C22×D5.D5φ: C4/C2C2 ⊆ Out D5×C1080(D5xC10):11C4400,215

Non-split extensions G=N.Q with N=D5×C10 and Q=C4
extensionφ:Q→Out NdρLabelID
(D5×C10).1C4 = D5×C5⋊C8φ: C4/C1C4 ⊆ Out D5×C10808-(D5xC10).1C4400,120
(D5×C10).2C4 = D10.F5φ: C4/C1C4 ⊆ Out D5×C10808-(D5xC10).2C4400,122
(D5×C10).3C4 = D10.2F5φ: C4/C1C4 ⊆ Out D5×C10808-(D5xC10).3C4400,127
(D5×C10).4C4 = C524M4(2)φ: C4/C1C4 ⊆ Out D5×C10808-(D5xC10).4C4400,128
(D5×C10).5C4 = D5×C52C8φ: C4/C2C2 ⊆ Out D5×C10804(D5xC10).5C4400,60
(D5×C10).6C4 = C20.30D10φ: C4/C2C2 ⊆ Out D5×C10804(D5xC10).6C4400,62
(D5×C10).7C4 = C5×C8⋊D5φ: C4/C2C2 ⊆ Out D5×C10802(D5xC10).7C4400,77
(D5×C10).8C4 = C5×D5⋊C8φ: C4/C2C2 ⊆ Out D5×C10804(D5xC10).8C4400,135
(D5×C10).9C4 = C5×C4.F5φ: C4/C2C2 ⊆ Out D5×C10804(D5xC10).9C4400,136
(D5×C10).10C4 = C20.14F5φ: C4/C2C2 ⊆ Out D5×C10804(D5xC10).10C4400,142
(D5×C10).11C4 = C20.12F5φ: C4/C2C2 ⊆ Out D5×C10804(D5xC10).11C4400,143
(D5×C10).12C4 = D5×C40φ: trivial image802(D5xC10).12C4400,76

׿
×
𝔽