metabelian, supersoluble, monomial, A-group
Aliases: C20.29D10, C5⋊D5⋊3C8, C5⋊3(C8×D5), C4.14D52, C5⋊2C8⋊6D5, C52⋊10(C2×C8), C10.8(C4×D5), C52⋊6C4.4C4, (C5×C20).28C22, C2.1(Dic5⋊2D5), (C5×C5⋊2C8)⋊5C2, (C4×C5⋊D5).3C2, (C2×C5⋊D5).4C4, (C5×C10).42(C2×C4), SmallGroup(400,61)
Series: Derived ►Chief ►Lower central ►Upper central
C52 — C20.29D10 |
Generators and relations for C20.29D10
G = < a,b,c | a20=1, b10=a5, c2=a10, bab-1=cac-1=a9, cbc-1=b9 >
Subgroups: 364 in 60 conjugacy classes, 22 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C8, C2×C4, D5, C10, C10, C2×C8, Dic5, C20, C20, D10, C52, C5⋊2C8, C40, C4×D5, C5⋊D5, C5×C10, C8×D5, C52⋊6C4, C5×C20, C2×C5⋊D5, C5×C5⋊2C8, C4×C5⋊D5, C20.29D10
Quotients: C1, C2, C4, C22, C8, C2×C4, D5, C2×C8, D10, C4×D5, C8×D5, D52, Dic5⋊2D5, C20.29D10
(1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39)(2 20 38 16 34 12 30 8 26 4 22 40 18 36 14 32 10 28 6 24)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 15 21 35)(2 24 22 4)(3 33 23 13)(5 11 25 31)(6 20 26 40)(7 29 27 9)(8 38 28 18)(10 16 30 36)(12 34 32 14)(17 39 37 19)
G:=sub<Sym(40)| (1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39)(2,20,38,16,34,12,30,8,26,4,22,40,18,36,14,32,10,28,6,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,15,21,35)(2,24,22,4)(3,33,23,13)(5,11,25,31)(6,20,26,40)(7,29,27,9)(8,38,28,18)(10,16,30,36)(12,34,32,14)(17,39,37,19)>;
G:=Group( (1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39)(2,20,38,16,34,12,30,8,26,4,22,40,18,36,14,32,10,28,6,24), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,15,21,35)(2,24,22,4)(3,33,23,13)(5,11,25,31)(6,20,26,40)(7,29,27,9)(8,38,28,18)(10,16,30,36)(12,34,32,14)(17,39,37,19) );
G=PermutationGroup([[(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39),(2,20,38,16,34,12,30,8,26,4,22,40,18,36,14,32,10,28,6,24)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,15,21,35),(2,24,22,4),(3,33,23,13),(5,11,25,31),(6,20,26,40),(7,29,27,9),(8,38,28,18),(10,16,30,36),(12,34,32,14),(17,39,37,19)]])
64 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 8A | ··· | 8H | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 20A | ··· | 20H | 20I | ··· | 20P | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 8 | ··· | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 25 | 25 | 1 | 1 | 25 | 25 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | ··· | 5 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 10 | ··· | 10 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | D5 | D10 | C4×D5 | C8×D5 | D52 | Dic5⋊2D5 | C20.29D10 |
kernel | C20.29D10 | C5×C5⋊2C8 | C4×C5⋊D5 | C52⋊6C4 | C2×C5⋊D5 | C5⋊D5 | C5⋊2C8 | C20 | C10 | C5 | C4 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 8 | 4 | 4 | 8 | 16 | 4 | 4 | 8 |
Matrix representation of C20.29D10 ►in GL4(𝔽41) generated by
0 | 32 | 0 | 0 |
9 | 22 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
14 | 0 | 0 | 0 |
25 | 27 | 0 | 0 |
0 | 0 | 40 | 6 |
0 | 0 | 35 | 35 |
9 | 0 | 0 | 0 |
19 | 32 | 0 | 0 |
0 | 0 | 40 | 6 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(41))| [0,9,0,0,32,22,0,0,0,0,1,0,0,0,0,1],[14,25,0,0,0,27,0,0,0,0,40,35,0,0,6,35],[9,19,0,0,0,32,0,0,0,0,40,0,0,0,6,1] >;
C20.29D10 in GAP, Magma, Sage, TeX
C_{20}._{29}D_{10}
% in TeX
G:=Group("C20.29D10");
// GroupNames label
G:=SmallGroup(400,61);
// by ID
G=gap.SmallGroup(400,61);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,31,50,970,11525]);
// Polycyclic
G:=Group<a,b,c|a^20=1,b^10=a^5,c^2=a^10,b*a*b^-1=c*a*c^-1=a^9,c*b*c^-1=b^9>;
// generators/relations