Extensions 1→N→G→Q→1 with N=D5×Dic5 and Q=C2

Direct product G=N×Q with N=D5×Dic5 and Q=C2
dρLabelID
C2×D5×Dic580C2xD5xDic5400,172

Semidirect products G=N:Q with N=D5×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×Dic5)⋊1C2 = D20⋊D5φ: C2/C1C2 ⊆ Out D5×Dic5404(D5xDic5):1C2400,165
(D5×Dic5)⋊2C2 = D10.4D10φ: C2/C1C2 ⊆ Out D5×Dic5404-(D5xDic5):2C2400,174
(D5×Dic5)⋊3C2 = D5×C5⋊D4φ: C2/C1C2 ⊆ Out D5×Dic5404(D5xDic5):3C2400,179
(D5×Dic5)⋊4C2 = D205D5φ: C2/C1C2 ⊆ Out D5×Dic5804-(D5xDic5):4C2400,164
(D5×Dic5)⋊5C2 = Dic5.D10φ: C2/C1C2 ⊆ Out D5×Dic5404(D5xDic5):5C2400,173
(D5×Dic5)⋊6C2 = C4×D52φ: trivial image404(D5xDic5):6C2400,169

Non-split extensions G=N.Q with N=D5×Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×Dic5).1C2 = D5×Dic10φ: C2/C1C2 ⊆ Out D5×Dic5804-(D5xDic5).1C2400,163
(D5×Dic5).2C2 = D5×C5⋊C8φ: C2/C1C2 ⊆ Out D5×Dic5808-(D5xDic5).2C2400,120
(D5×Dic5).3C2 = D10.F5φ: C2/C1C2 ⊆ Out D5×Dic5808-(D5xDic5).3C2400,122
(D5×Dic5).4C2 = D5.Dic10φ: C2/C1C2 ⊆ Out D5×Dic5808-(D5xDic5).4C2400,119
(D5×Dic5).5C2 = C524M4(2)φ: C2/C1C2 ⊆ Out D5×Dic5808-(D5xDic5).5C2400,128
(D5×Dic5).6C2 = Dic5×F5φ: C2/C1C2 ⊆ Out D5×Dic5808-(D5xDic5).6C2400,117
(D5×Dic5).7C2 = D10.2F5φ: C2/C1C2 ⊆ Out D5×Dic5808-(D5xDic5).7C2400,127

׿
×
𝔽