metabelian, supersoluble, monomial
Aliases: D10.3D10, Dic5.3D10, C102.7C22, C5⋊D4⋊3D5, C22.1D52, C5⋊4(C4○D20), C5⋊D20⋊2C2, (D5×Dic5)⋊5C2, (C2×Dic5)⋊3D5, (C2×C10).3D10, C52⋊6(C4○D4), C52⋊7D4⋊1C2, C5⋊3(D4⋊2D5), C52⋊2Q8⋊4C2, (C10×Dic5)⋊6C2, Dic5⋊2D5⋊2C2, (C5×C10).11C23, (D5×C10).3C22, C10.11(C22×D5), C52⋊6C4.3C22, (C5×Dic5).21C22, C2.12(C2×D52), (C5×C5⋊D4)⋊1C2, (C2×C5⋊D5).2C22, SmallGroup(400,173)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic5.D10
G = < a,b,c,d | a10=c10=1, b2=d2=a5, bab-1=cac-1=dad-1=a-1, cbc-1=dbd-1=a5b, dcd-1=c-1 >
Subgroups: 596 in 96 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2×C4, D4, Q8, D5, C10, C10, C4○D4, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C52, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C5⋊D4, C2×C20, C5×D4, C5×D5, C5⋊D5, C5×C10, C5×C10, C4○D20, D4⋊2D5, C5×Dic5, C52⋊6C4, D5×C10, C2×C5⋊D5, C102, D5×Dic5, Dic5⋊2D5, C5⋊D20, C52⋊2Q8, C10×Dic5, C5×C5⋊D4, C52⋊7D4, Dic5.D10
Quotients: C1, C2, C22, C23, D5, C4○D4, D10, C22×D5, C4○D20, D4⋊2D5, D52, C2×D52, Dic5.D10
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 26 6 21)(2 25 7 30)(3 24 8 29)(4 23 9 28)(5 22 10 27)(11 34 16 39)(12 33 17 38)(13 32 18 37)(14 31 19 36)(15 40 20 35)
(1 29 5 25 9 21 3 27 7 23)(2 28 6 24 10 30 4 26 8 22)(11 31 17 35 13 39 19 33 15 37)(12 40 18 34 14 38 20 32 16 36)
(1 34 6 39)(2 33 7 38)(3 32 8 37)(4 31 9 36)(5 40 10 35)(11 21 16 26)(12 30 17 25)(13 29 18 24)(14 28 19 23)(15 27 20 22)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,26,6,21)(2,25,7,30)(3,24,8,29)(4,23,9,28)(5,22,10,27)(11,34,16,39)(12,33,17,38)(13,32,18,37)(14,31,19,36)(15,40,20,35), (1,29,5,25,9,21,3,27,7,23)(2,28,6,24,10,30,4,26,8,22)(11,31,17,35,13,39,19,33,15,37)(12,40,18,34,14,38,20,32,16,36), (1,34,6,39)(2,33,7,38)(3,32,8,37)(4,31,9,36)(5,40,10,35)(11,21,16,26)(12,30,17,25)(13,29,18,24)(14,28,19,23)(15,27,20,22)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,26,6,21)(2,25,7,30)(3,24,8,29)(4,23,9,28)(5,22,10,27)(11,34,16,39)(12,33,17,38)(13,32,18,37)(14,31,19,36)(15,40,20,35), (1,29,5,25,9,21,3,27,7,23)(2,28,6,24,10,30,4,26,8,22)(11,31,17,35,13,39,19,33,15,37)(12,40,18,34,14,38,20,32,16,36), (1,34,6,39)(2,33,7,38)(3,32,8,37)(4,31,9,36)(5,40,10,35)(11,21,16,26)(12,30,17,25)(13,29,18,24)(14,28,19,23)(15,27,20,22) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,26,6,21),(2,25,7,30),(3,24,8,29),(4,23,9,28),(5,22,10,27),(11,34,16,39),(12,33,17,38),(13,32,18,37),(14,31,19,36),(15,40,20,35)], [(1,29,5,25,9,21,3,27,7,23),(2,28,6,24,10,30,4,26,8,22),(11,31,17,35,13,39,19,33,15,37),(12,40,18,34,14,38,20,32,16,36)], [(1,34,6,39),(2,33,7,38),(3,32,8,37),(4,31,9,36),(5,40,10,35),(11,21,16,26),(12,30,17,25),(13,29,18,24),(14,28,19,23),(15,27,20,22)]])
52 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 10A | ··· | 10H | 10I | ··· | 10V | 10W | 10X | 20A | ··· | 20H | 20I | 20J |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 |
size | 1 | 1 | 2 | 10 | 50 | 5 | 5 | 10 | 10 | 50 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 20 | 20 | 10 | ··· | 10 | 20 | 20 |
52 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | D5 | C4○D4 | D10 | D10 | D10 | C4○D20 | D4⋊2D5 | D52 | C2×D52 | Dic5.D10 |
kernel | Dic5.D10 | D5×Dic5 | Dic5⋊2D5 | C5⋊D20 | C52⋊2Q8 | C10×Dic5 | C5×C5⋊D4 | C52⋊7D4 | C2×Dic5 | C5⋊D4 | C52 | Dic5 | D10 | C2×C10 | C5 | C5 | C22 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 6 | 2 | 4 | 8 | 2 | 4 | 4 | 8 |
Matrix representation of Dic5.D10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 34 | 40 |
0 | 0 | 0 | 0 | 1 | 0 |
12 | 23 | 0 | 0 | 0 | 0 |
24 | 29 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 34 | 40 |
12 | 23 | 0 | 0 | 0 | 0 |
33 | 29 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 34 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 34 | 40 |
15 | 39 | 0 | 0 | 0 | 0 |
31 | 26 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 7 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 34 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,1,0,0,0,0,40,0],[12,24,0,0,0,0,23,29,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,34,0,0,0,0,0,40],[12,33,0,0,0,0,23,29,0,0,0,0,0,0,40,7,0,0,0,0,34,7,0,0,0,0,0,0,1,34,0,0,0,0,0,40],[15,31,0,0,0,0,39,26,0,0,0,0,0,0,1,0,0,0,0,0,7,40,0,0,0,0,0,0,1,34,0,0,0,0,0,40] >;
Dic5.D10 in GAP, Magma, Sage, TeX
{\rm Dic}_5.D_{10}
% in TeX
G:=Group("Dic5.D10");
// GroupNames label
G:=SmallGroup(400,173);
// by ID
G=gap.SmallGroup(400,173);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,55,218,970,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^10=c^10=1,b^2=d^2=a^5,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations