Copied to
clipboard

G = D10.4D10order 400 = 24·52

4th non-split extension by D10 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial

Aliases: D10.4D10, Dic5.4D10, C102.8C22, C5:D4:1D5, C22.2D52, (D5xDic5):2C2, (C2xC10).4D10, C52:7(C4oD4), C52:2D4:3C2, C5:4(D4:2D5), C52:2Q8:5C2, (C5xC10).12C23, (D5xC10).4C22, C10.12(C22xD5), (C5xDic5).5C22, C52:6C4.12C22, C2.13(C2xD52), (C5xC5:D4):2C2, (C2xC52:6C4):5C2, SmallGroup(400,174)

Series: Derived Chief Lower central Upper central

C1C5xC10 — D10.4D10
C1C5C52C5xC10D5xC10D5xDic5 — D10.4D10
C52C5xC10 — D10.4D10
C1C2C22

Generators and relations for D10.4D10
 G = < a,b,c,d | a10=b2=1, c10=d2=a5, bab=cac-1=dad-1=a-1, cbc-1=a3b, dbd-1=a8b, dcd-1=c9 >

Subgroups: 508 in 96 conjugacy classes, 32 normal (12 characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2xC4, D4, Q8, D5, C10, C10, C4oD4, Dic5, Dic5, C20, D10, C2xC10, C2xC10, C52, Dic10, C4xD5, C2xDic5, C5:D4, C5:D4, C5xD4, C5xD5, C5xC10, C5xC10, D4:2D5, C5xDic5, C52:6C4, D5xC10, C102, D5xDic5, C52:2D4, C52:2Q8, C5xC5:D4, C2xC52:6C4, D10.4D10
Quotients: C1, C2, C22, C23, D5, C4oD4, D10, C22xD5, D4:2D5, D52, C2xD52, D10.4D10

Smallest permutation representation of D10.4D10
On 40 points
Generators in S40
(1 15 9 3 17 11 5 19 13 7)(2 8 14 20 6 12 18 4 10 16)(21 27 33 39 25 31 37 23 29 35)(22 36 30 24 38 32 26 40 34 28)
(1 10)(2 13)(3 12)(4 15)(5 14)(6 17)(7 16)(8 19)(9 18)(11 20)(21 32)(22 31)(23 34)(24 33)(25 36)(26 35)(27 38)(28 37)(29 40)(30 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 34 11 24)(2 23 12 33)(3 32 13 22)(4 21 14 31)(5 30 15 40)(6 39 16 29)(7 28 17 38)(8 37 18 27)(9 26 19 36)(10 35 20 25)

G:=sub<Sym(40)| (1,15,9,3,17,11,5,19,13,7)(2,8,14,20,6,12,18,4,10,16)(21,27,33,39,25,31,37,23,29,35)(22,36,30,24,38,32,26,40,34,28), (1,10)(2,13)(3,12)(4,15)(5,14)(6,17)(7,16)(8,19)(9,18)(11,20)(21,32)(22,31)(23,34)(24,33)(25,36)(26,35)(27,38)(28,37)(29,40)(30,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,34,11,24)(2,23,12,33)(3,32,13,22)(4,21,14,31)(5,30,15,40)(6,39,16,29)(7,28,17,38)(8,37,18,27)(9,26,19,36)(10,35,20,25)>;

G:=Group( (1,15,9,3,17,11,5,19,13,7)(2,8,14,20,6,12,18,4,10,16)(21,27,33,39,25,31,37,23,29,35)(22,36,30,24,38,32,26,40,34,28), (1,10)(2,13)(3,12)(4,15)(5,14)(6,17)(7,16)(8,19)(9,18)(11,20)(21,32)(22,31)(23,34)(24,33)(25,36)(26,35)(27,38)(28,37)(29,40)(30,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,34,11,24)(2,23,12,33)(3,32,13,22)(4,21,14,31)(5,30,15,40)(6,39,16,29)(7,28,17,38)(8,37,18,27)(9,26,19,36)(10,35,20,25) );

G=PermutationGroup([[(1,15,9,3,17,11,5,19,13,7),(2,8,14,20,6,12,18,4,10,16),(21,27,33,39,25,31,37,23,29,35),(22,36,30,24,38,32,26,40,34,28)], [(1,10),(2,13),(3,12),(4,15),(5,14),(6,17),(7,16),(8,19),(9,18),(11,20),(21,32),(22,31),(23,34),(24,33),(25,36),(26,35),(27,38),(28,37),(29,40),(30,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,34,11,24),(2,23,12,33),(3,32,13,22),(4,21,14,31),(5,30,15,40),(6,39,16,29),(7,28,17,38),(8,37,18,27),(9,26,19,36),(10,35,20,25)]])

46 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B5C5D5E5F5G5H10A10B10C10D10E···10T10U10V10W10X20A20B20C20D
order1222244444555555551010101010···101010101020202020
size112101010102525502222444422224···42020202020202020

46 irreducible representations

dim111111222224444
type++++++++++-++-
imageC1C2C2C2C2C2D5C4oD4D10D10D10D4:2D5D52C2xD52D10.4D10
kernelD10.4D10D5xDic5C52:2D4C52:2Q8C5xC5:D4C2xC52:6C4C5:D4C52Dic5D10C2xC10C5C22C2C1
# reps121121424444448

Matrix representation of D10.4D10 in GL6(F41)

4000000
0400000
00403400
007700
000010
000001
,
0400000
4000000
001700
0004000
000010
000001
,
010000
4000000
001000
00344000
00004034
000077
,
3200000
0320000
0040000
007100
00004034
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,7,0,0,0,0,34,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,7,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,0,40,7,0,0,0,0,34,7],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,7,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,34,1] >;

D10.4D10 in GAP, Magma, Sage, TeX

D_{10}._4D_{10}
% in TeX

G:=Group("D10.4D10");
// GroupNames label

G:=SmallGroup(400,174);
// by ID

G=gap.SmallGroup(400,174);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,55,218,116,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=1,c^10=d^2=a^5,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^3*b,d*b*d^-1=a^8*b,d*c*d^-1=c^9>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<