direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C20×C7⋊C3, C28⋊C15, C140⋊C3, C7⋊2C60, C35⋊8C12, C70.4C6, C14.2C30, C2.(C10×C7⋊C3), C10.2(C2×C7⋊C3), (C10×C7⋊C3).4C2, (C2×C7⋊C3).2C10, SmallGroup(420,4)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C70 — C10×C7⋊C3 — C20×C7⋊C3 |
C7 — C20×C7⋊C3 |
Generators and relations for C20×C7⋊C3
G = < a,b,c | a20=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 64 107 84 48 34 133)(2 65 108 85 49 35 134)(3 66 109 86 50 36 135)(4 67 110 87 51 37 136)(5 68 111 88 52 38 137)(6 69 112 89 53 39 138)(7 70 113 90 54 40 139)(8 71 114 91 55 21 140)(9 72 115 92 56 22 121)(10 73 116 93 57 23 122)(11 74 117 94 58 24 123)(12 75 118 95 59 25 124)(13 76 119 96 60 26 125)(14 77 120 97 41 27 126)(15 78 101 98 42 28 127)(16 79 102 99 43 29 128)(17 80 103 100 44 30 129)(18 61 104 81 45 31 130)(19 62 105 82 46 32 131)(20 63 106 83 47 33 132)
(21 91 140)(22 92 121)(23 93 122)(24 94 123)(25 95 124)(26 96 125)(27 97 126)(28 98 127)(29 99 128)(30 100 129)(31 81 130)(32 82 131)(33 83 132)(34 84 133)(35 85 134)(36 86 135)(37 87 136)(38 88 137)(39 89 138)(40 90 139)(41 77 120)(42 78 101)(43 79 102)(44 80 103)(45 61 104)(46 62 105)(47 63 106)(48 64 107)(49 65 108)(50 66 109)(51 67 110)(52 68 111)(53 69 112)(54 70 113)(55 71 114)(56 72 115)(57 73 116)(58 74 117)(59 75 118)(60 76 119)
G:=sub<Sym(140)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,64,107,84,48,34,133)(2,65,108,85,49,35,134)(3,66,109,86,50,36,135)(4,67,110,87,51,37,136)(5,68,111,88,52,38,137)(6,69,112,89,53,39,138)(7,70,113,90,54,40,139)(8,71,114,91,55,21,140)(9,72,115,92,56,22,121)(10,73,116,93,57,23,122)(11,74,117,94,58,24,123)(12,75,118,95,59,25,124)(13,76,119,96,60,26,125)(14,77,120,97,41,27,126)(15,78,101,98,42,28,127)(16,79,102,99,43,29,128)(17,80,103,100,44,30,129)(18,61,104,81,45,31,130)(19,62,105,82,46,32,131)(20,63,106,83,47,33,132), (21,91,140)(22,92,121)(23,93,122)(24,94,123)(25,95,124)(26,96,125)(27,97,126)(28,98,127)(29,99,128)(30,100,129)(31,81,130)(32,82,131)(33,83,132)(34,84,133)(35,85,134)(36,86,135)(37,87,136)(38,88,137)(39,89,138)(40,90,139)(41,77,120)(42,78,101)(43,79,102)(44,80,103)(45,61,104)(46,62,105)(47,63,106)(48,64,107)(49,65,108)(50,66,109)(51,67,110)(52,68,111)(53,69,112)(54,70,113)(55,71,114)(56,72,115)(57,73,116)(58,74,117)(59,75,118)(60,76,119)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,64,107,84,48,34,133)(2,65,108,85,49,35,134)(3,66,109,86,50,36,135)(4,67,110,87,51,37,136)(5,68,111,88,52,38,137)(6,69,112,89,53,39,138)(7,70,113,90,54,40,139)(8,71,114,91,55,21,140)(9,72,115,92,56,22,121)(10,73,116,93,57,23,122)(11,74,117,94,58,24,123)(12,75,118,95,59,25,124)(13,76,119,96,60,26,125)(14,77,120,97,41,27,126)(15,78,101,98,42,28,127)(16,79,102,99,43,29,128)(17,80,103,100,44,30,129)(18,61,104,81,45,31,130)(19,62,105,82,46,32,131)(20,63,106,83,47,33,132), (21,91,140)(22,92,121)(23,93,122)(24,94,123)(25,95,124)(26,96,125)(27,97,126)(28,98,127)(29,99,128)(30,100,129)(31,81,130)(32,82,131)(33,83,132)(34,84,133)(35,85,134)(36,86,135)(37,87,136)(38,88,137)(39,89,138)(40,90,139)(41,77,120)(42,78,101)(43,79,102)(44,80,103)(45,61,104)(46,62,105)(47,63,106)(48,64,107)(49,65,108)(50,66,109)(51,67,110)(52,68,111)(53,69,112)(54,70,113)(55,71,114)(56,72,115)(57,73,116)(58,74,117)(59,75,118)(60,76,119) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,64,107,84,48,34,133),(2,65,108,85,49,35,134),(3,66,109,86,50,36,135),(4,67,110,87,51,37,136),(5,68,111,88,52,38,137),(6,69,112,89,53,39,138),(7,70,113,90,54,40,139),(8,71,114,91,55,21,140),(9,72,115,92,56,22,121),(10,73,116,93,57,23,122),(11,74,117,94,58,24,123),(12,75,118,95,59,25,124),(13,76,119,96,60,26,125),(14,77,120,97,41,27,126),(15,78,101,98,42,28,127),(16,79,102,99,43,29,128),(17,80,103,100,44,30,129),(18,61,104,81,45,31,130),(19,62,105,82,46,32,131),(20,63,106,83,47,33,132)], [(21,91,140),(22,92,121),(23,93,122),(24,94,123),(25,95,124),(26,96,125),(27,97,126),(28,98,127),(29,99,128),(30,100,129),(31,81,130),(32,82,131),(33,83,132),(34,84,133),(35,85,134),(36,86,135),(37,87,136),(38,88,137),(39,89,138),(40,90,139),(41,77,120),(42,78,101),(43,79,102),(44,80,103),(45,61,104),(46,62,105),(47,63,106),(48,64,107),(49,65,108),(50,66,109),(51,67,110),(52,68,111),(53,69,112),(54,70,113),(55,71,114),(56,72,115),(57,73,116),(58,74,117),(59,75,118),(60,76,119)]])
100 conjugacy classes
class | 1 | 2 | 3A | 3B | 4A | 4B | 5A | 5B | 5C | 5D | 6A | 6B | 7A | 7B | 10A | 10B | 10C | 10D | 12A | 12B | 12C | 12D | 14A | 14B | 15A | ··· | 15H | 20A | ··· | 20H | 28A | 28B | 28C | 28D | 30A | ··· | 30H | 35A | ··· | 35H | 60A | ··· | 60P | 70A | ··· | 70H | 140A | ··· | 140P |
order | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 7 | 7 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 14 | 14 | 15 | ··· | 15 | 20 | ··· | 20 | 28 | 28 | 28 | 28 | 30 | ··· | 30 | 35 | ··· | 35 | 60 | ··· | 60 | 70 | ··· | 70 | 140 | ··· | 140 |
size | 1 | 1 | 7 | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 7 | 3 | 3 | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 3 | 3 | 7 | ··· | 7 | 1 | ··· | 1 | 3 | 3 | 3 | 3 | 7 | ··· | 7 | 3 | ··· | 3 | 7 | ··· | 7 | 3 | ··· | 3 | 3 | ··· | 3 |
100 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||||||||
image | C1 | C2 | C3 | C4 | C5 | C6 | C10 | C12 | C15 | C20 | C30 | C60 | C7⋊C3 | C2×C7⋊C3 | C4×C7⋊C3 | C5×C7⋊C3 | C10×C7⋊C3 | C20×C7⋊C3 |
kernel | C20×C7⋊C3 | C10×C7⋊C3 | C140 | C5×C7⋊C3 | C4×C7⋊C3 | C70 | C2×C7⋊C3 | C35 | C28 | C7⋊C3 | C14 | C7 | C20 | C10 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 4 | 2 | 4 | 4 | 8 | 8 | 8 | 16 | 2 | 2 | 4 | 8 | 8 | 16 |
Matrix representation of C20×C7⋊C3 ►in GL3(𝔽421) generated by
408 | 0 | 0 |
0 | 408 | 0 |
0 | 0 | 408 |
176 | 177 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
244 | 420 | 420 |
0 | 1 | 0 |
G:=sub<GL(3,GF(421))| [408,0,0,0,408,0,0,0,408],[176,1,0,177,0,1,1,0,0],[1,244,0,0,420,1,0,420,0] >;
C20×C7⋊C3 in GAP, Magma, Sage, TeX
C_{20}\times C_7\rtimes C_3
% in TeX
G:=Group("C20xC7:C3");
// GroupNames label
G:=SmallGroup(420,4);
// by ID
G=gap.SmallGroup(420,4);
# by ID
G:=PCGroup([5,-2,-3,-5,-2,-7,150,1509]);
// Polycyclic
G:=Group<a,b,c|a^20=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations
Export