extension | φ:Q→Aut N | d | ρ | Label | ID |
C35⋊1C12 = C35⋊C12 | φ: C12/C1 → C12 ⊆ Aut C35 | 35 | 12 | C35:1C12 | 420,15 |
C35⋊2C12 = F5×C7⋊C3 | φ: C12/C1 → C12 ⊆ Aut C35 | 35 | 12 | C35:2C12 | 420,14 |
C35⋊3C12 = C35⋊3C12 | φ: C12/C2 → C6 ⊆ Aut C35 | 140 | 6- | C35:3C12 | 420,3 |
C35⋊4C12 = C5×C7⋊C12 | φ: C12/C2 → C6 ⊆ Aut C35 | 140 | 6 | C35:4C12 | 420,1 |
C35⋊5C12 = Dic5×C7⋊C3 | φ: C12/C2 → C6 ⊆ Aut C35 | 140 | 6 | C35:5C12 | 420,2 |
C35⋊6C12 = C3×C7⋊F5 | φ: C12/C3 → C4 ⊆ Aut C35 | 105 | 4 | C35:6C12 | 420,21 |
C35⋊7C12 = F5×C21 | φ: C12/C3 → C4 ⊆ Aut C35 | 105 | 4 | C35:7C12 | 420,20 |
C35⋊8C12 = C20×C7⋊C3 | φ: C12/C4 → C3 ⊆ Aut C35 | 140 | 3 | C35:8C12 | 420,4 |
C35⋊9C12 = C3×Dic35 | φ: C12/C6 → C2 ⊆ Aut C35 | 420 | 2 | C35:9C12 | 420,7 |
C35⋊10C12 = C15×Dic7 | φ: C12/C6 → C2 ⊆ Aut C35 | 420 | 2 | C35:10C12 | 420,5 |
C35⋊11C12 = Dic5×C21 | φ: C12/C6 → C2 ⊆ Aut C35 | 420 | 2 | C35:11C12 | 420,6 |