Copied to
clipboard

G = C5×S3×D7order 420 = 22·3·5·7

Direct product of C5, S3 and D7

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C5×S3×D7, C355D6, D21⋊C10, C156D14, C1056C22, C21⋊(C2×C10), (S3×C7)⋊C10, C71(S3×C10), (C3×D7)⋊C10, C31(C10×D7), (S3×C35)⋊2C2, (C5×D21)⋊3C2, (D7×C15)⋊3C2, SmallGroup(420,25)

Series: Derived Chief Lower central Upper central

C1C21 — C5×S3×D7
C1C7C21C105D7×C15 — C5×S3×D7
C21 — C5×S3×D7
C1C5

Generators and relations for C5×S3×D7
 G = < a,b,c,d,e | a5=b3=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
7C2
21C2
21C22
7S3
7C6
3C10
7C10
21C10
3D7
3C14
7D6
21C2×C10
3D14
7C5×S3
7C30
3C5×D7
3C70
7S3×C10
3C10×D7

Smallest permutation representation of C5×S3×D7
On 105 points
Generators in S105
(1 90 69 48 27)(2 91 70 49 28)(3 85 64 43 22)(4 86 65 44 23)(5 87 66 45 24)(6 88 67 46 25)(7 89 68 47 26)(8 92 71 50 29)(9 93 72 51 30)(10 94 73 52 31)(11 95 74 53 32)(12 96 75 54 33)(13 97 76 55 34)(14 98 77 56 35)(15 99 78 57 36)(16 100 79 58 37)(17 101 80 59 38)(18 102 81 60 39)(19 103 82 61 40)(20 104 83 62 41)(21 105 84 63 42)
(1 13 20)(2 14 21)(3 8 15)(4 9 16)(5 10 17)(6 11 18)(7 12 19)(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)(43 50 57)(44 51 58)(45 52 59)(46 53 60)(47 54 61)(48 55 62)(49 56 63)(64 71 78)(65 72 79)(66 73 80)(67 74 81)(68 75 82)(69 76 83)(70 77 84)(85 92 99)(86 93 100)(87 94 101)(88 95 102)(89 96 103)(90 97 104)(91 98 105)
(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(92 99)(93 100)(94 101)(95 102)(96 103)(97 104)(98 105)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)(36 38)(39 42)(40 41)(43 45)(46 49)(47 48)(50 52)(53 56)(54 55)(57 59)(60 63)(61 62)(64 66)(67 70)(68 69)(71 73)(74 77)(75 76)(78 80)(81 84)(82 83)(85 87)(88 91)(89 90)(92 94)(95 98)(96 97)(99 101)(102 105)(103 104)

G:=sub<Sym(105)| (1,90,69,48,27)(2,91,70,49,28)(3,85,64,43,22)(4,86,65,44,23)(5,87,66,45,24)(6,88,67,46,25)(7,89,68,47,26)(8,92,71,50,29)(9,93,72,51,30)(10,94,73,52,31)(11,95,74,53,32)(12,96,75,54,33)(13,97,76,55,34)(14,98,77,56,35)(15,99,78,57,36)(16,100,79,58,37)(17,101,80,59,38)(18,102,81,60,39)(19,103,82,61,40)(20,104,83,62,41)(21,105,84,63,42), (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,50,57)(44,51,58)(45,52,59)(46,53,60)(47,54,61)(48,55,62)(49,56,63)(64,71,78)(65,72,79)(66,73,80)(67,74,81)(68,75,82)(69,76,83)(70,77,84)(85,92,99)(86,93,100)(87,94,101)(88,95,102)(89,96,103)(90,97,104)(91,98,105), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55)(57,59)(60,63)(61,62)(64,66)(67,70)(68,69)(71,73)(74,77)(75,76)(78,80)(81,84)(82,83)(85,87)(88,91)(89,90)(92,94)(95,98)(96,97)(99,101)(102,105)(103,104)>;

G:=Group( (1,90,69,48,27)(2,91,70,49,28)(3,85,64,43,22)(4,86,65,44,23)(5,87,66,45,24)(6,88,67,46,25)(7,89,68,47,26)(8,92,71,50,29)(9,93,72,51,30)(10,94,73,52,31)(11,95,74,53,32)(12,96,75,54,33)(13,97,76,55,34)(14,98,77,56,35)(15,99,78,57,36)(16,100,79,58,37)(17,101,80,59,38)(18,102,81,60,39)(19,103,82,61,40)(20,104,83,62,41)(21,105,84,63,42), (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,50,57)(44,51,58)(45,52,59)(46,53,60)(47,54,61)(48,55,62)(49,56,63)(64,71,78)(65,72,79)(66,73,80)(67,74,81)(68,75,82)(69,76,83)(70,77,84)(85,92,99)(86,93,100)(87,94,101)(88,95,102)(89,96,103)(90,97,104)(91,98,105), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)(43,45)(46,49)(47,48)(50,52)(53,56)(54,55)(57,59)(60,63)(61,62)(64,66)(67,70)(68,69)(71,73)(74,77)(75,76)(78,80)(81,84)(82,83)(85,87)(88,91)(89,90)(92,94)(95,98)(96,97)(99,101)(102,105)(103,104) );

G=PermutationGroup([[(1,90,69,48,27),(2,91,70,49,28),(3,85,64,43,22),(4,86,65,44,23),(5,87,66,45,24),(6,88,67,46,25),(7,89,68,47,26),(8,92,71,50,29),(9,93,72,51,30),(10,94,73,52,31),(11,95,74,53,32),(12,96,75,54,33),(13,97,76,55,34),(14,98,77,56,35),(15,99,78,57,36),(16,100,79,58,37),(17,101,80,59,38),(18,102,81,60,39),(19,103,82,61,40),(20,104,83,62,41),(21,105,84,63,42)], [(1,13,20),(2,14,21),(3,8,15),(4,9,16),(5,10,17),(6,11,18),(7,12,19),(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42),(43,50,57),(44,51,58),(45,52,59),(46,53,60),(47,54,61),(48,55,62),(49,56,63),(64,71,78),(65,72,79),(66,73,80),(67,74,81),(68,75,82),(69,76,83),(70,77,84),(85,92,99),(86,93,100),(87,94,101),(88,95,102),(89,96,103),(90,97,104),(91,98,105)], [(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(92,99),(93,100),(94,101),(95,102),(96,103),(97,104),(98,105)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34),(36,38),(39,42),(40,41),(43,45),(46,49),(47,48),(50,52),(53,56),(54,55),(57,59),(60,63),(61,62),(64,66),(67,70),(68,69),(71,73),(74,77),(75,76),(78,80),(81,84),(82,83),(85,87),(88,91),(89,90),(92,94),(95,98),(96,97),(99,101),(102,105),(103,104)]])

75 conjugacy classes

class 1 2A2B2C 3 5A5B5C5D 6 7A7B7C10A10B10C10D10E10F10G10H10I10J10K10L14A14B14C15A15B15C15D21A21B21C30A30B30C30D35A···35L70A···70L105A···105L
order1222355556777101010101010101010101010141414151515152121213030303035···3570···70105···105
size13721211111422233337777212121216662222444141414142···26···64···4

75 irreducible representations

dim111111112222222244
type+++++++++
imageC1C2C2C2C5C10C10C10S3D6D7D14C5×S3S3×C10C5×D7C10×D7S3×D7C5×S3×D7
kernelC5×S3×D7D7×C15S3×C35C5×D21S3×D7S3×C7C3×D7D21C5×D7C35C5×S3C15D7C7S3C3C5C1
# reps111144441133441212312

Matrix representation of C5×S3×D7 in GL5(𝔽211)

1070000
01000
00100
00010
00001
,
10000
021021000
01000
00010
00001
,
2100000
01000
021021000
00010
00001
,
10000
01000
00100
0001931
000209129
,
2100000
01000
00100
000129210
00018282

G:=sub<GL(5,GF(211))| [107,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,210,1,0,0,0,210,0,0,0,0,0,0,1,0,0,0,0,0,1],[210,0,0,0,0,0,1,210,0,0,0,0,210,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,193,209,0,0,0,1,129],[210,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,129,182,0,0,0,210,82] >;

C5×S3×D7 in GAP, Magma, Sage, TeX

C_5\times S_3\times D_7
% in TeX

G:=Group("C5xS3xD7");
// GroupNames label

G:=SmallGroup(420,25);
// by ID

G=gap.SmallGroup(420,25);
# by ID

G:=PCGroup([5,-2,-2,-5,-3,-7,408,9004]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^3=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C5×S3×D7 in TeX

׿
×
𝔽