Copied to
clipboard

G = D7×D15order 420 = 22·3·5·7

Direct product of D7 and D15

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D7×D15, C71D30, C351D6, C211D10, C154D14, D1053C2, C1053C22, (C5×D7)⋊S3, (C3×D7)⋊D5, C32(D5×D7), C52(S3×D7), (C7×D15)⋊1C2, (D7×C15)⋊1C2, SmallGroup(420,26)

Series: Derived Chief Lower central Upper central

C1C105 — D7×D15
C1C7C35C105D7×C15 — D7×D15
C105 — D7×D15
C1

Generators and relations for D7×D15
 G = < a,b,c,d | a7=b2=c15=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

7C2
15C2
105C2
105C22
5S3
7C6
35S3
3D5
7C10
21D5
15D7
15C14
35D6
21D10
15D14
7D15
7C30
5D21
5S3×C7
3D35
3C7×D5
7D30
5S3×D7
3D5×D7

Smallest permutation representation of D7×D15
On 105 points
Generators in S105
(1 56 75 102 84 35 26)(2 57 61 103 85 36 27)(3 58 62 104 86 37 28)(4 59 63 105 87 38 29)(5 60 64 91 88 39 30)(6 46 65 92 89 40 16)(7 47 66 93 90 41 17)(8 48 67 94 76 42 18)(9 49 68 95 77 43 19)(10 50 69 96 78 44 20)(11 51 70 97 79 45 21)(12 52 71 98 80 31 22)(13 53 72 99 81 32 23)(14 54 73 100 82 33 24)(15 55 74 101 83 34 25)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 25)(31 52)(32 53)(33 54)(34 55)(35 56)(36 57)(37 58)(38 59)(39 60)(40 46)(41 47)(42 48)(43 49)(44 50)(45 51)(61 85)(62 86)(63 87)(64 88)(65 89)(66 90)(67 76)(68 77)(69 78)(70 79)(71 80)(72 81)(73 82)(74 83)(75 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 30)(22 29)(23 28)(24 27)(25 26)(31 38)(32 37)(33 36)(34 35)(39 45)(40 44)(41 43)(46 50)(47 49)(51 60)(52 59)(53 58)(54 57)(55 56)(61 73)(62 72)(63 71)(64 70)(65 69)(66 68)(74 75)(77 90)(78 89)(79 88)(80 87)(81 86)(82 85)(83 84)(91 97)(92 96)(93 95)(98 105)(99 104)(100 103)(101 102)

G:=sub<Sym(105)| (1,56,75,102,84,35,26)(2,57,61,103,85,36,27)(3,58,62,104,86,37,28)(4,59,63,105,87,38,29)(5,60,64,91,88,39,30)(6,46,65,92,89,40,16)(7,47,66,93,90,41,17)(8,48,67,94,76,42,18)(9,49,68,95,77,43,19)(10,50,69,96,78,44,20)(11,51,70,97,79,45,21)(12,52,71,98,80,31,22)(13,53,72,99,81,32,23)(14,54,73,100,82,33,24)(15,55,74,101,83,34,25), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81)(73,82)(74,83)(75,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,30)(22,29)(23,28)(24,27)(25,26)(31,38)(32,37)(33,36)(34,35)(39,45)(40,44)(41,43)(46,50)(47,49)(51,60)(52,59)(53,58)(54,57)(55,56)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,75)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(91,97)(92,96)(93,95)(98,105)(99,104)(100,103)(101,102)>;

G:=Group( (1,56,75,102,84,35,26)(2,57,61,103,85,36,27)(3,58,62,104,86,37,28)(4,59,63,105,87,38,29)(5,60,64,91,88,39,30)(6,46,65,92,89,40,16)(7,47,66,93,90,41,17)(8,48,67,94,76,42,18)(9,49,68,95,77,43,19)(10,50,69,96,78,44,20)(11,51,70,97,79,45,21)(12,52,71,98,80,31,22)(13,53,72,99,81,32,23)(14,54,73,100,82,33,24)(15,55,74,101,83,34,25), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,46)(41,47)(42,48)(43,49)(44,50)(45,51)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81)(73,82)(74,83)(75,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,30)(22,29)(23,28)(24,27)(25,26)(31,38)(32,37)(33,36)(34,35)(39,45)(40,44)(41,43)(46,50)(47,49)(51,60)(52,59)(53,58)(54,57)(55,56)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,75)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(91,97)(92,96)(93,95)(98,105)(99,104)(100,103)(101,102) );

G=PermutationGroup([[(1,56,75,102,84,35,26),(2,57,61,103,85,36,27),(3,58,62,104,86,37,28),(4,59,63,105,87,38,29),(5,60,64,91,88,39,30),(6,46,65,92,89,40,16),(7,47,66,93,90,41,17),(8,48,67,94,76,42,18),(9,49,68,95,77,43,19),(10,50,69,96,78,44,20),(11,51,70,97,79,45,21),(12,52,71,98,80,31,22),(13,53,72,99,81,32,23),(14,54,73,100,82,33,24),(15,55,74,101,83,34,25)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,25),(31,52),(32,53),(33,54),(34,55),(35,56),(36,57),(37,58),(38,59),(39,60),(40,46),(41,47),(42,48),(43,49),(44,50),(45,51),(61,85),(62,86),(63,87),(64,88),(65,89),(66,90),(67,76),(68,77),(69,78),(70,79),(71,80),(72,81),(73,82),(74,83),(75,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,30),(22,29),(23,28),(24,27),(25,26),(31,38),(32,37),(33,36),(34,35),(39,45),(40,44),(41,43),(46,50),(47,49),(51,60),(52,59),(53,58),(54,57),(55,56),(61,73),(62,72),(63,71),(64,70),(65,69),(66,68),(74,75),(77,90),(78,89),(79,88),(80,87),(81,86),(82,85),(83,84),(91,97),(92,96),(93,95),(98,105),(99,104),(100,103),(101,102)]])

45 conjugacy classes

class 1 2A2B2C 3 5A5B 6 7A7B7C10A10B14A14B14C15A15B15C15D21A21B21C30A30B30C30D35A···35F105A···105L
order122235567771010141414151515152121213030303035···35105···105
size17151052221422214143030302222444141414144···44···4

45 irreducible representations

dim111122222222444
type+++++++++++++++
imageC1C2C2C2S3D5D6D7D10D14D15D30S3×D7D5×D7D7×D15
kernelD7×D15D7×C15C7×D15D105C5×D7C3×D7C35D15C21C15D7C7C5C3C1
# reps1111121323443612

Matrix representation of D7×D15 in GL4(𝔽211) generated by

0100
2101800
0010
0001
,
0100
1000
0010
0001
,
1000
0100
00588
0012355
,
1000
0100
00210178
0001
G:=sub<GL(4,GF(211))| [0,210,0,0,1,18,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,5,123,0,0,88,55],[1,0,0,0,0,1,0,0,0,0,210,0,0,0,178,1] >;

D7×D15 in GAP, Magma, Sage, TeX

D_7\times D_{15}
% in TeX

G:=Group("D7xD15");
// GroupNames label

G:=SmallGroup(420,26);
// by ID

G=gap.SmallGroup(420,26);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-7,67,488,9004]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^15=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D7×D15 in TeX

׿
×
𝔽