Copied to
clipboard

G = F5×C7⋊C3order 420 = 22·3·5·7

Direct product of F5 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group

Aliases: F5×C7⋊C3, C352C12, (C7×F5)⋊C3, C72(C3×F5), (C7×D5).2C6, C5⋊(C4×C7⋊C3), (C5×C7⋊C3)⋊2C4, D5.(C2×C7⋊C3), (D5×C7⋊C3).2C2, SmallGroup(420,14)

Series: Derived Chief Lower central Upper central

C1C35 — F5×C7⋊C3
C1C7C35C7×D5D5×C7⋊C3 — F5×C7⋊C3
C35 — F5×C7⋊C3
C1

Generators and relations for F5×C7⋊C3
 G = < a,b,c,d | a5=b4=c7=d3=1, bab-1=a3, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

5C2
7C3
5C4
35C6
5C14
7C15
35C12
5C28
7C3×D5
5C2×C7⋊C3
7C3×F5
5C4×C7⋊C3

Character table of F5×C7⋊C3

 class 123A3B4A4B56A6B7A7B12A12B12C12D14A14B15A15B28A28B28C28D35A35B
 size 15775543535333535353515152828151515151212
ρ11111111111111111111111111    trivial
ρ21111-1-111111-1-1-1-11111-1-1-1-111    linear of order 2
ρ311ζ32ζ3111ζ3ζ3211ζ32ζ3ζ3ζ3211ζ3ζ32111111    linear of order 3
ρ411ζ32ζ3-1-11ζ3ζ3211ζ6ζ65ζ65ζ611ζ3ζ32-1-1-1-111    linear of order 6
ρ511ζ3ζ32-1-11ζ32ζ311ζ65ζ6ζ6ζ6511ζ32ζ3-1-1-1-111    linear of order 6
ρ611ζ3ζ32111ζ32ζ311ζ3ζ32ζ32ζ311ζ32ζ3111111    linear of order 3
ρ71-111i-i1-1-111i-ii-i-1-111i-i-ii11    linear of order 4
ρ81-111-ii1-1-111-ii-ii-1-111-iii-i11    linear of order 4
ρ91-1ζ3ζ32-ii1ζ6ζ6511ζ43ζ3ζ4ζ32ζ43ζ32ζ4ζ3-1-1ζ32ζ3-iii-i11    linear of order 12
ρ101-1ζ32ζ3-ii1ζ65ζ611ζ43ζ32ζ4ζ3ζ43ζ3ζ4ζ32-1-1ζ3ζ32-iii-i11    linear of order 12
ρ111-1ζ32ζ3i-i1ζ65ζ611ζ4ζ32ζ43ζ3ζ4ζ3ζ43ζ32-1-1ζ3ζ32i-i-ii11    linear of order 12
ρ121-1ζ3ζ32i-i1ζ6ζ6511ζ4ζ3ζ43ζ32ζ4ζ32ζ43ζ3-1-1ζ32ζ3i-i-ii11    linear of order 12
ρ133300-3-3300-1+-7/2-1--7/20000-1--7/2-1+-7/2001--7/21--7/21+-7/21+-7/2-1+-7/2-1--7/2    complex lifted from C2×C7⋊C3
ρ14330033300-1--7/2-1+-7/20000-1+-7/2-1--7/200-1--7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2    complex lifted from C7⋊C3
ρ153300-3-3300-1--7/2-1+-7/20000-1+-7/2-1--7/2001+-7/21+-7/21--7/21--7/2-1--7/2-1+-7/2    complex lifted from C2×C7⋊C3
ρ16330033300-1+-7/2-1--7/20000-1--7/2-1+-7/200-1+-7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/2    complex lifted from C7⋊C3
ρ173-3003i-3i300-1--7/2-1+-7/200001--7/21+-7/200ζ4ζ764ζ754ζ73ζ43ζ7643ζ7543ζ73ζ43ζ7443ζ7243ζ7ζ4ζ744ζ724ζ7-1--7/2-1+-7/2    complex lifted from C4×C7⋊C3
ρ183-300-3i3i300-1--7/2-1+-7/200001--7/21+-7/200ζ43ζ7643ζ7543ζ73ζ4ζ764ζ754ζ73ζ4ζ744ζ724ζ7ζ43ζ7443ζ7243ζ7-1--7/2-1+-7/2    complex lifted from C4×C7⋊C3
ρ193-3003i-3i300-1+-7/2-1--7/200001+-7/21--7/200ζ4ζ744ζ724ζ7ζ43ζ7443ζ7243ζ7ζ43ζ7643ζ7543ζ73ζ4ζ764ζ754ζ73-1+-7/2-1--7/2    complex lifted from C4×C7⋊C3
ρ203-300-3i3i300-1+-7/2-1--7/200001+-7/21--7/200ζ43ζ7443ζ7243ζ7ζ4ζ744ζ724ζ7ζ4ζ764ζ754ζ73ζ43ζ7643ζ7543ζ73-1+-7/2-1--7/2    complex lifted from C4×C7⋊C3
ρ21404400-10044000000-1-10000-1-1    orthogonal lifted from F5
ρ2240-2+2-3-2-2-300-10044000000ζ6ζ650000-1-1    complex lifted from C3×F5
ρ2340-2-2-3-2+2-300-10044000000ζ65ζ60000-1-1    complex lifted from C3×F5
ρ241200000-300-2-2-7-2+2-70000000000001+-7/21--7/2    complex faithful
ρ251200000-300-2+2-7-2-2-70000000000001--7/21+-7/2    complex faithful

Smallest permutation representation of F5×C7⋊C3
On 35 points
Generators in S35
(1 8 15 22 29)(2 9 16 23 30)(3 10 17 24 31)(4 11 18 25 32)(5 12 19 26 33)(6 13 20 27 34)(7 14 21 28 35)
(8 15 29 22)(9 16 30 23)(10 17 31 24)(11 18 32 25)(12 19 33 26)(13 20 34 27)(14 21 35 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)

G:=sub<Sym(35)| (1,8,15,22,29)(2,9,16,23,30)(3,10,17,24,31)(4,11,18,25,32)(5,12,19,26,33)(6,13,20,27,34)(7,14,21,28,35), (8,15,29,22)(9,16,30,23)(10,17,31,24)(11,18,32,25)(12,19,33,26)(13,20,34,27)(14,21,35,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)>;

G:=Group( (1,8,15,22,29)(2,9,16,23,30)(3,10,17,24,31)(4,11,18,25,32)(5,12,19,26,33)(6,13,20,27,34)(7,14,21,28,35), (8,15,29,22)(9,16,30,23)(10,17,31,24)(11,18,32,25)(12,19,33,26)(13,20,34,27)(14,21,35,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34) );

G=PermutationGroup([[(1,8,15,22,29),(2,9,16,23,30),(3,10,17,24,31),(4,11,18,25,32),(5,12,19,26,33),(6,13,20,27,34),(7,14,21,28,35)], [(8,15,29,22),(9,16,30,23),(10,17,31,24),(11,18,32,25),(12,19,33,26),(13,20,34,27),(14,21,35,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34)]])

Matrix representation of F5×C7⋊C3 in GL7(𝔽421)

1000000
0100000
0010000
000000420
000100420
000010420
000001420
,
420000000
042000000
004200000
0000010
0001000
0000001
0000100
,
0010000
101770000
011760000
0001000
0000100
0000010
0000001
,
17624400000
42024510000
420100000
00020000
00002000
00000200
00000020

G:=sub<GL(7,GF(421))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,420,420,420,420],[420,0,0,0,0,0,0,0,420,0,0,0,0,0,0,0,420,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,177,176,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[176,420,420,0,0,0,0,244,245,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,20,0,0,0,0,0,0,0,20,0,0,0,0,0,0,0,20,0,0,0,0,0,0,0,20] >;

F5×C7⋊C3 in GAP, Magma, Sage, TeX

F_5\times C_7\rtimes C_3
% in TeX

G:=Group("F5xC7:C3");
// GroupNames label

G:=SmallGroup(420,14);
// by ID

G=gap.SmallGroup(420,14);
# by ID

G:=PCGroup([5,-2,-3,-2,-5,-7,30,483,173,1509]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=c^7=d^3=1,b*a*b^-1=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of F5×C7⋊C3 in TeX
Character table of F5×C7⋊C3 in TeX

׿
×
𝔽