direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C2×C37⋊C6, C74⋊C6, D74⋊C3, D37⋊C6, C37⋊(C2×C6), C37⋊C3⋊C22, (C2×C37⋊C3)⋊C2, SmallGroup(444,8)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C37 — C37⋊C3 — C37⋊C6 — C2×C37⋊C6 |
C37 — C2×C37⋊C6 |
Generators and relations for C2×C37⋊C6
G = < a,b,c | a2=b37=c6=1, ab=ba, ac=ca, cbc-1=b11 >
Character table of C2×C37⋊C6
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 37A | 37B | 37C | 37D | 37E | 37F | 74A | 74B | 74C | 74D | 74E | 74F | |
size | 1 | 1 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 37 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ32 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ8 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ9 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ11 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ3 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ12 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ13 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | -ζ3735-ζ3722-ζ3720-ζ3717-ζ3715-ζ372 | -ζ3728-ζ3725-ζ3721-ζ3716-ζ3712-ζ379 | -ζ3734-ζ3733-ζ3730-ζ377-ζ374-ζ373 | -ζ3731-ζ3729-ζ3723-ζ3714-ζ378-ζ376 | -ζ3732-ζ3724-ζ3719-ζ3718-ζ3713-ζ375 | -ζ3736-ζ3727-ζ3726-ζ3711-ζ3710-ζ37 | orthogonal faithful |
ρ14 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | -ζ3728-ζ3725-ζ3721-ζ3716-ζ3712-ζ379 | -ζ3735-ζ3722-ζ3720-ζ3717-ζ3715-ζ372 | -ζ3732-ζ3724-ζ3719-ζ3718-ζ3713-ζ375 | -ζ3736-ζ3727-ζ3726-ζ3711-ζ3710-ζ37 | -ζ3734-ζ3733-ζ3730-ζ377-ζ374-ζ373 | -ζ3731-ζ3729-ζ3723-ζ3714-ζ378-ζ376 | orthogonal faithful |
ρ15 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | orthogonal lifted from C37⋊C6 |
ρ16 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | orthogonal lifted from C37⋊C6 |
ρ17 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | -ζ3734-ζ3733-ζ3730-ζ377-ζ374-ζ373 | -ζ3732-ζ3724-ζ3719-ζ3718-ζ3713-ζ375 | -ζ3731-ζ3729-ζ3723-ζ3714-ζ378-ζ376 | -ζ3728-ζ3725-ζ3721-ζ3716-ζ3712-ζ379 | -ζ3736-ζ3727-ζ3726-ζ3711-ζ3710-ζ37 | -ζ3735-ζ3722-ζ3720-ζ3717-ζ3715-ζ372 | orthogonal faithful |
ρ18 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | orthogonal lifted from C37⋊C6 |
ρ19 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | orthogonal lifted from C37⋊C6 |
ρ20 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | -ζ3731-ζ3729-ζ3723-ζ3714-ζ378-ζ376 | -ζ3736-ζ3727-ζ3726-ζ3711-ζ3710-ζ37 | -ζ3728-ζ3725-ζ3721-ζ3716-ζ3712-ζ379 | -ζ3732-ζ3724-ζ3719-ζ3718-ζ3713-ζ375 | -ζ3735-ζ3722-ζ3720-ζ3717-ζ3715-ζ372 | -ζ3734-ζ3733-ζ3730-ζ377-ζ374-ζ373 | orthogonal faithful |
ρ21 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | -ζ3736-ζ3727-ζ3726-ζ3711-ζ3710-ζ37 | -ζ3731-ζ3729-ζ3723-ζ3714-ζ378-ζ376 | -ζ3735-ζ3722-ζ3720-ζ3717-ζ3715-ζ372 | -ζ3734-ζ3733-ζ3730-ζ377-ζ374-ζ373 | -ζ3728-ζ3725-ζ3721-ζ3716-ζ3712-ζ379 | -ζ3732-ζ3724-ζ3719-ζ3718-ζ3713-ζ375 | orthogonal faithful |
ρ22 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | orthogonal lifted from C37⋊C6 |
ρ23 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | orthogonal lifted from C37⋊C6 |
ρ24 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3732+ζ3724+ζ3719+ζ3718+ζ3713+ζ375 | ζ3734+ζ3733+ζ3730+ζ377+ζ374+ζ373 | ζ3736+ζ3727+ζ3726+ζ3711+ζ3710+ζ37 | ζ3735+ζ3722+ζ3720+ζ3717+ζ3715+ζ372 | ζ3731+ζ3729+ζ3723+ζ3714+ζ378+ζ376 | ζ3728+ζ3725+ζ3721+ζ3716+ζ3712+ζ379 | -ζ3732-ζ3724-ζ3719-ζ3718-ζ3713-ζ375 | -ζ3734-ζ3733-ζ3730-ζ377-ζ374-ζ373 | -ζ3736-ζ3727-ζ3726-ζ3711-ζ3710-ζ37 | -ζ3735-ζ3722-ζ3720-ζ3717-ζ3715-ζ372 | -ζ3731-ζ3729-ζ3723-ζ3714-ζ378-ζ376 | -ζ3728-ζ3725-ζ3721-ζ3716-ζ3712-ζ379 | orthogonal faithful |
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 51)(15 52)(16 53)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 65)(29 66)(30 67)(31 68)(32 69)(33 70)(34 71)(35 72)(36 73)(37 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)
(1 38)(2 65 27 74 11 49)(3 55 16 73 21 60)(4 45 5 72 31 71)(6 62 20 70 14 56)(7 52 9 69 24 67)(8 42 35 68 34 41)(10 59 13 66 17 63)(12 39 28 64 37 48)(15 46 32 61 30 44)(18 53 36 58 23 40)(19 43 25 57 33 51)(22 50 29 54 26 47)
G:=sub<Sym(74)| (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74), (1,38)(2,65,27,74,11,49)(3,55,16,73,21,60)(4,45,5,72,31,71)(6,62,20,70,14,56)(7,52,9,69,24,67)(8,42,35,68,34,41)(10,59,13,66,17,63)(12,39,28,64,37,48)(15,46,32,61,30,44)(18,53,36,58,23,40)(19,43,25,57,33,51)(22,50,29,54,26,47)>;
G:=Group( (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74), (1,38)(2,65,27,74,11,49)(3,55,16,73,21,60)(4,45,5,72,31,71)(6,62,20,70,14,56)(7,52,9,69,24,67)(8,42,35,68,34,41)(10,59,13,66,17,63)(12,39,28,64,37,48)(15,46,32,61,30,44)(18,53,36,58,23,40)(19,43,25,57,33,51)(22,50,29,54,26,47) );
G=PermutationGroup([[(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,51),(15,52),(16,53),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,65),(29,66),(30,67),(31,68),(32,69),(33,70),(34,71),(35,72),(36,73),(37,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)], [(1,38),(2,65,27,74,11,49),(3,55,16,73,21,60),(4,45,5,72,31,71),(6,62,20,70,14,56),(7,52,9,69,24,67),(8,42,35,68,34,41),(10,59,13,66,17,63),(12,39,28,64,37,48),(15,46,32,61,30,44),(18,53,36,58,23,40),(19,43,25,57,33,51),(22,50,29,54,26,47)]])
Matrix representation of C2×C37⋊C6 ►in GL6(𝔽223)
222 | 0 | 0 | 0 | 0 | 0 |
0 | 222 | 0 | 0 | 0 | 0 |
0 | 0 | 222 | 0 | 0 | 0 |
0 | 0 | 0 | 222 | 0 | 0 |
0 | 0 | 0 | 0 | 222 | 0 |
0 | 0 | 0 | 0 | 0 | 222 |
37 | 147 | 93 | 126 | 42 | 222 |
166 | 89 | 29 | 140 | 121 | 98 |
5 | 51 | 109 | 11 | 78 | 30 |
195 | 166 | 15 | 206 | 143 | 55 |
177 | 209 | 23 | 212 | 219 | 170 |
62 | 174 | 192 | 181 | 210 | 149 |
33 | 66 | 184 | 156 | 129 | 78 |
164 | 4 | 59 | 142 | 139 | 31 |
196 | 193 | 32 | 173 | 54 | 108 |
65 | 150 | 69 | 102 | 212 | 77 |
146 | 56 | 141 | 16 | 204 | 182 |
82 | 111 | 52 | 124 | 187 | 71 |
G:=sub<GL(6,GF(223))| [222,0,0,0,0,0,0,222,0,0,0,0,0,0,222,0,0,0,0,0,0,222,0,0,0,0,0,0,222,0,0,0,0,0,0,222],[37,166,5,195,177,62,147,89,51,166,209,174,93,29,109,15,23,192,126,140,11,206,212,181,42,121,78,143,219,210,222,98,30,55,170,149],[33,164,196,65,146,82,66,4,193,150,56,111,184,59,32,69,141,52,156,142,173,102,16,124,129,139,54,212,204,187,78,31,108,77,182,71] >;
C2×C37⋊C6 in GAP, Magma, Sage, TeX
C_2\times C_{37}\rtimes C_6
% in TeX
G:=Group("C2xC37:C6");
// GroupNames label
G:=SmallGroup(444,8);
// by ID
G=gap.SmallGroup(444,8);
# by ID
G:=PCGroup([4,-2,-2,-3,-37,6915,1259]);
// Polycyclic
G:=Group<a,b,c|a^2=b^37=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^11>;
// generators/relations
Export
Subgroup lattice of C2×C37⋊C6 in TeX
Character table of C2×C37⋊C6 in TeX