Copied to
clipboard

G = C2×C37⋊C6order 444 = 22·3·37

Direct product of C2 and C37⋊C6

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C37⋊C6, C74⋊C6, D74⋊C3, D37⋊C6, C37⋊(C2×C6), C37⋊C3⋊C22, (C2×C37⋊C3)⋊C2, SmallGroup(444,8)

Series: Derived Chief Lower central Upper central

C1C37 — C2×C37⋊C6
C1C37C37⋊C3C37⋊C6 — C2×C37⋊C6
C37 — C2×C37⋊C6
C1C2

Generators and relations for C2×C37⋊C6
 G = < a,b,c | a2=b37=c6=1, ab=ba, ac=ca, cbc-1=b11 >

37C2
37C2
37C3
37C22
37C6
37C6
37C6
37C2×C6

Character table of C2×C37⋊C6

 class 12A2B2C3A3B6A6B6C6D6E6F37A37B37C37D37E37F74A74B74C74D74E74F
 size 1137373737373737373737666666666666
ρ1111111111111111111111111    trivial
ρ211-1-111-1-1-11-11111111111111    linear of order 2
ρ31-11-111-111-1-1-1111111-1-1-1-1-1-1    linear of order 2
ρ41-1-11111-1-1-11-1111111-1-1-1-1-1-1    linear of order 2
ρ511-1-1ζ32ζ3ζ6ζ65ζ6ζ32ζ65ζ3111111111111    linear of order 6
ρ61111ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3111111111111    linear of order 3
ρ71-1-11ζ3ζ32ζ3ζ6ζ65ζ65ζ32ζ6111111-1-1-1-1-1-1    linear of order 6
ρ811-1-1ζ3ζ32ζ65ζ6ζ65ζ3ζ6ζ32111111111111    linear of order 6
ρ91-11-1ζ3ζ32ζ65ζ32ζ3ζ65ζ6ζ6111111-1-1-1-1-1-1    linear of order 6
ρ101111ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32111111111111    linear of order 3
ρ111-1-11ζ32ζ3ζ32ζ65ζ6ζ6ζ3ζ65111111-1-1-1-1-1-1    linear of order 6
ρ121-11-1ζ32ζ3ζ6ζ3ζ32ζ6ζ65ζ65111111-1-1-1-1-1-1    linear of order 6
ρ136-60000000000ζ37353722372037173715372ζ37283725372137163712379ζ373437333730377374373ζ3731372937233714378376ζ37323724371937183713375ζ373637273726371137103737353722372037173715372372837253721371637123793734373337303773743733731372937233714378376373237243719371837133753736372737263711371037    orthogonal faithful
ρ146-60000000000ζ37283725372137163712379ζ37353722372037173715372ζ37323724371937183713375ζ3736372737263711371037ζ373437333730377374373ζ373137293723371437837637283725372137163712379373537223720371737153723732372437193718371337537363727372637113710373734373337303773743733731372937233714378376    orthogonal faithful
ρ15660000000000ζ3736372737263711371037ζ3731372937233714378376ζ37353722372037173715372ζ373437333730377374373ζ37283725372137163712379ζ37323724371937183713375ζ3736372737263711371037ζ3731372937233714378376ζ37353722372037173715372ζ373437333730377374373ζ37283725372137163712379ζ37323724371937183713375    orthogonal lifted from C37⋊C6
ρ16660000000000ζ37353722372037173715372ζ37283725372137163712379ζ373437333730377374373ζ3731372937233714378376ζ37323724371937183713375ζ3736372737263711371037ζ37353722372037173715372ζ37283725372137163712379ζ373437333730377374373ζ3731372937233714378376ζ37323724371937183713375ζ3736372737263711371037    orthogonal lifted from C37⋊C6
ρ176-60000000000ζ373437333730377374373ζ37323724371937183713375ζ3731372937233714378376ζ37283725372137163712379ζ3736372737263711371037ζ3735372237203717371537237343733373037737437337323724371937183713375373137293723371437837637283725372137163712379373637273726371137103737353722372037173715372    orthogonal faithful
ρ18660000000000ζ37283725372137163712379ζ37353722372037173715372ζ37323724371937183713375ζ3736372737263711371037ζ373437333730377374373ζ3731372937233714378376ζ37283725372137163712379ζ37353722372037173715372ζ37323724371937183713375ζ3736372737263711371037ζ373437333730377374373ζ3731372937233714378376    orthogonal lifted from C37⋊C6
ρ19660000000000ζ3731372937233714378376ζ3736372737263711371037ζ37283725372137163712379ζ37323724371937183713375ζ37353722372037173715372ζ373437333730377374373ζ3731372937233714378376ζ3736372737263711371037ζ37283725372137163712379ζ37323724371937183713375ζ37353722372037173715372ζ373437333730377374373    orthogonal lifted from C37⋊C6
ρ206-60000000000ζ3731372937233714378376ζ3736372737263711371037ζ37283725372137163712379ζ37323724371937183713375ζ37353722372037173715372ζ37343733373037737437337313729372337143783763736372737263711371037372837253721371637123793732372437193718371337537353722372037173715372373437333730377374373    orthogonal faithful
ρ216-60000000000ζ3736372737263711371037ζ3731372937233714378376ζ37353722372037173715372ζ373437333730377374373ζ37283725372137163712379ζ3732372437193718371337537363727372637113710373731372937233714378376373537223720371737153723734373337303773743733728372537213716371237937323724371937183713375    orthogonal faithful
ρ22660000000000ζ37323724371937183713375ζ373437333730377374373ζ3736372737263711371037ζ37353722372037173715372ζ3731372937233714378376ζ37283725372137163712379ζ37323724371937183713375ζ373437333730377374373ζ3736372737263711371037ζ37353722372037173715372ζ3731372937233714378376ζ37283725372137163712379    orthogonal lifted from C37⋊C6
ρ23660000000000ζ373437333730377374373ζ37323724371937183713375ζ3731372937233714378376ζ37283725372137163712379ζ3736372737263711371037ζ37353722372037173715372ζ373437333730377374373ζ37323724371937183713375ζ3731372937233714378376ζ37283725372137163712379ζ3736372737263711371037ζ37353722372037173715372    orthogonal lifted from C37⋊C6
ρ246-60000000000ζ37323724371937183713375ζ373437333730377374373ζ3736372737263711371037ζ37353722372037173715372ζ3731372937233714378376ζ3728372537213716371237937323724371937183713375373437333730377374373373637273726371137103737353722372037173715372373137293723371437837637283725372137163712379    orthogonal faithful

Smallest permutation representation of C2×C37⋊C6
On 74 points
Generators in S74
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 51)(15 52)(16 53)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 65)(29 66)(30 67)(31 68)(32 69)(33 70)(34 71)(35 72)(36 73)(37 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)
(1 38)(2 65 27 74 11 49)(3 55 16 73 21 60)(4 45 5 72 31 71)(6 62 20 70 14 56)(7 52 9 69 24 67)(8 42 35 68 34 41)(10 59 13 66 17 63)(12 39 28 64 37 48)(15 46 32 61 30 44)(18 53 36 58 23 40)(19 43 25 57 33 51)(22 50 29 54 26 47)

G:=sub<Sym(74)| (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74), (1,38)(2,65,27,74,11,49)(3,55,16,73,21,60)(4,45,5,72,31,71)(6,62,20,70,14,56)(7,52,9,69,24,67)(8,42,35,68,34,41)(10,59,13,66,17,63)(12,39,28,64,37,48)(15,46,32,61,30,44)(18,53,36,58,23,40)(19,43,25,57,33,51)(22,50,29,54,26,47)>;

G:=Group( (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74), (1,38)(2,65,27,74,11,49)(3,55,16,73,21,60)(4,45,5,72,31,71)(6,62,20,70,14,56)(7,52,9,69,24,67)(8,42,35,68,34,41)(10,59,13,66,17,63)(12,39,28,64,37,48)(15,46,32,61,30,44)(18,53,36,58,23,40)(19,43,25,57,33,51)(22,50,29,54,26,47) );

G=PermutationGroup([[(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,51),(15,52),(16,53),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,65),(29,66),(30,67),(31,68),(32,69),(33,70),(34,71),(35,72),(36,73),(37,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)], [(1,38),(2,65,27,74,11,49),(3,55,16,73,21,60),(4,45,5,72,31,71),(6,62,20,70,14,56),(7,52,9,69,24,67),(8,42,35,68,34,41),(10,59,13,66,17,63),(12,39,28,64,37,48),(15,46,32,61,30,44),(18,53,36,58,23,40),(19,43,25,57,33,51),(22,50,29,54,26,47)]])

Matrix representation of C2×C37⋊C6 in GL6(𝔽223)

22200000
02220000
00222000
00022200
00002220
00000222
,
371479312642222
166892914012198
551109117830
1951661520614355
17720923212219170
62174192181210149
,
336618415612978
16445914213931
1961933217354108
651506910221277
1465614116204182
821115212418771

G:=sub<GL(6,GF(223))| [222,0,0,0,0,0,0,222,0,0,0,0,0,0,222,0,0,0,0,0,0,222,0,0,0,0,0,0,222,0,0,0,0,0,0,222],[37,166,5,195,177,62,147,89,51,166,209,174,93,29,109,15,23,192,126,140,11,206,212,181,42,121,78,143,219,210,222,98,30,55,170,149],[33,164,196,65,146,82,66,4,193,150,56,111,184,59,32,69,141,52,156,142,173,102,16,124,129,139,54,212,204,187,78,31,108,77,182,71] >;

C2×C37⋊C6 in GAP, Magma, Sage, TeX

C_2\times C_{37}\rtimes C_6
% in TeX

G:=Group("C2xC37:C6");
// GroupNames label

G:=SmallGroup(444,8);
// by ID

G=gap.SmallGroup(444,8);
# by ID

G:=PCGroup([4,-2,-2,-3,-37,6915,1259]);
// Polycyclic

G:=Group<a,b,c|a^2=b^37=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^11>;
// generators/relations

Export

Subgroup lattice of C2×C37⋊C6 in TeX
Character table of C2×C37⋊C6 in TeX

׿
×
𝔽