Copied to
clipboard

G = C2×C4×C11⋊C5order 440 = 23·5·11

Direct product of C2×C4 and C11⋊C5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C4×C11⋊C5, C444C10, C222C20, (C2×C44)⋊C5, C113(C2×C20), (C2×C22).2C10, C22.6(C2×C10), C22.(C2×C11⋊C5), C2.1(C22×C11⋊C5), (C22×C11⋊C5).2C2, (C2×C11⋊C5).6C22, SmallGroup(440,12)

Series: Derived Chief Lower central Upper central

C1C11 — C2×C4×C11⋊C5
C1C11C22C2×C11⋊C5C22×C11⋊C5 — C2×C4×C11⋊C5
C11 — C2×C4×C11⋊C5
C1C2×C4

Generators and relations for C2×C4×C11⋊C5
 G = < a,b,c,d | a2=b4=c11=d5=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

11C5
11C10
11C10
11C10
11C20
11C2×C10
11C20
11C2×C20

Smallest permutation representation of C2×C4×C11⋊C5
On 88 points
Generators in S88
(1 56)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 45)(13 46)(14 47)(15 48)(16 49)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 78)(24 79)(25 80)(26 81)(27 82)(28 83)(29 84)(30 85)(31 86)(32 87)(33 88)(34 67)(35 68)(36 69)(37 70)(38 71)(39 72)(40 73)(41 74)(42 75)(43 76)(44 77)
(1 23 12 34)(2 24 13 35)(3 25 14 36)(4 26 15 37)(5 27 16 38)(6 28 17 39)(7 29 18 40)(8 30 19 41)(9 31 20 42)(10 32 21 43)(11 33 22 44)(45 67 56 78)(46 68 57 79)(47 69 58 80)(48 70 59 81)(49 71 60 82)(50 72 61 83)(51 73 62 84)(52 74 63 85)(53 75 64 86)(54 76 65 87)(55 77 66 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(2 5 6 10 4)(3 9 11 8 7)(13 16 17 21 15)(14 20 22 19 18)(24 27 28 32 26)(25 31 33 30 29)(35 38 39 43 37)(36 42 44 41 40)(46 49 50 54 48)(47 53 55 52 51)(57 60 61 65 59)(58 64 66 63 62)(68 71 72 76 70)(69 75 77 74 73)(79 82 83 87 81)(80 86 88 85 84)

G:=sub<Sym(88)| (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,76)(44,77), (1,23,12,34)(2,24,13,35)(3,25,14,36)(4,26,15,37)(5,27,16,38)(6,28,17,39)(7,29,18,40)(8,30,19,41)(9,31,20,42)(10,32,21,43)(11,33,22,44)(45,67,56,78)(46,68,57,79)(47,69,58,80)(48,70,59,81)(49,71,60,82)(50,72,61,83)(51,73,62,84)(52,74,63,85)(53,75,64,86)(54,76,65,87)(55,77,66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40)(46,49,50,54,48)(47,53,55,52,51)(57,60,61,65,59)(58,64,66,63,62)(68,71,72,76,70)(69,75,77,74,73)(79,82,83,87,81)(80,86,88,85,84)>;

G:=Group( (1,56)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,45)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,78)(24,79)(25,80)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,67)(35,68)(36,69)(37,70)(38,71)(39,72)(40,73)(41,74)(42,75)(43,76)(44,77), (1,23,12,34)(2,24,13,35)(3,25,14,36)(4,26,15,37)(5,27,16,38)(6,28,17,39)(7,29,18,40)(8,30,19,41)(9,31,20,42)(10,32,21,43)(11,33,22,44)(45,67,56,78)(46,68,57,79)(47,69,58,80)(48,70,59,81)(49,71,60,82)(50,72,61,83)(51,73,62,84)(52,74,63,85)(53,75,64,86)(54,76,65,87)(55,77,66,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40)(46,49,50,54,48)(47,53,55,52,51)(57,60,61,65,59)(58,64,66,63,62)(68,71,72,76,70)(69,75,77,74,73)(79,82,83,87,81)(80,86,88,85,84) );

G=PermutationGroup([[(1,56),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,45),(13,46),(14,47),(15,48),(16,49),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,78),(24,79),(25,80),(26,81),(27,82),(28,83),(29,84),(30,85),(31,86),(32,87),(33,88),(34,67),(35,68),(36,69),(37,70),(38,71),(39,72),(40,73),(41,74),(42,75),(43,76),(44,77)], [(1,23,12,34),(2,24,13,35),(3,25,14,36),(4,26,15,37),(5,27,16,38),(6,28,17,39),(7,29,18,40),(8,30,19,41),(9,31,20,42),(10,32,21,43),(11,33,22,44),(45,67,56,78),(46,68,57,79),(47,69,58,80),(48,70,59,81),(49,71,60,82),(50,72,61,83),(51,73,62,84),(52,74,63,85),(53,75,64,86),(54,76,65,87),(55,77,66,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(2,5,6,10,4),(3,9,11,8,7),(13,16,17,21,15),(14,20,22,19,18),(24,27,28,32,26),(25,31,33,30,29),(35,38,39,43,37),(36,42,44,41,40),(46,49,50,54,48),(47,53,55,52,51),(57,60,61,65,59),(58,64,66,63,62),(68,71,72,76,70),(69,75,77,74,73),(79,82,83,87,81),(80,86,88,85,84)]])

56 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B5C5D10A···10L11A11B20A···20P22A···22F44A···44H
order12224444555510···10111120···2022···2244···44
size111111111111111111···115511···115···55···5

56 irreducible representations

dim111111115555
type+++
imageC1C2C2C4C5C10C10C20C11⋊C5C2×C11⋊C5C2×C11⋊C5C4×C11⋊C5
kernelC2×C4×C11⋊C5C4×C11⋊C5C22×C11⋊C5C2×C11⋊C5C2×C44C44C2×C22C22C2×C4C4C22C2
# reps1214484162428

Matrix representation of C2×C4×C11⋊C5 in GL6(𝔽661)

66000000
010000
001000
000100
000010
000001
,
10600000
01060000
00106000
00010600
00001060
00000106
,
100000
000001
0100045
00100660
000101
0000144
,
19700000
010201
00044145
0006160660
0004601
00143044

G:=sub<GL(6,GF(661))| [660,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[106,0,0,0,0,0,0,106,0,0,0,0,0,0,106,0,0,0,0,0,0,106,0,0,0,0,0,0,106,0,0,0,0,0,0,106],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,45,660,1,44],[197,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,2,44,616,46,43,0,0,1,0,0,0,0,1,45,660,1,44] >;

C2×C4×C11⋊C5 in GAP, Magma, Sage, TeX

C_2\times C_4\times C_{11}\rtimes C_5
% in TeX

G:=Group("C2xC4xC11:C5");
// GroupNames label

G:=SmallGroup(440,12);
// by ID

G=gap.SmallGroup(440,12);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-11,106,1014]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^11=d^5=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C2×C4×C11⋊C5 in TeX

׿
×
𝔽