direct product, metacyclic, supersoluble, monomial, Z-group, 5-hyperelementary
Aliases: C4×C11⋊C5, C44⋊C5, C11⋊2C20, C22.2C10, C2.(C2×C11⋊C5), (C2×C11⋊C5).2C2, SmallGroup(220,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C11 — C22 — C2×C11⋊C5 — C4×C11⋊C5 |
C11 — C4×C11⋊C5 |
Generators and relations for C4×C11⋊C5
G = < a,b,c | a4=b11=c5=1, ab=ba, ac=ca, cbc-1=b3 >
Character table of C4×C11⋊C5
class | 1 | 2 | 4A | 4B | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 11A | 11B | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 22A | 22B | 44A | 44B | 44C | 44D | |
size | 1 | 1 | 1 | 1 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 5 | 5 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 5 | 5 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | i | -i | i | -i | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ4 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -i | i | -i | i | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ5 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | 1 | 1 | ζ52 | ζ53 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ6 | 1 | 1 | -1 | -1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | 1 | 1 | -ζ52 | -ζ53 | -ζ53 | -ζ5 | -ζ5 | -ζ54 | -ζ54 | -ζ52 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ7 | 1 | 1 | -1 | -1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | 1 | 1 | -ζ54 | -ζ5 | -ζ5 | -ζ52 | -ζ52 | -ζ53 | -ζ53 | -ζ54 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ8 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | 1 | 1 | ζ5 | ζ54 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ9 | 1 | 1 | -1 | -1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | 1 | 1 | -ζ5 | -ζ54 | -ζ54 | -ζ53 | -ζ53 | -ζ52 | -ζ52 | -ζ5 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ10 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | 1 | 1 | ζ53 | ζ52 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ11 | 1 | 1 | -1 | -1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | 1 | 1 | -ζ53 | -ζ52 | -ζ52 | -ζ54 | -ζ54 | -ζ5 | -ζ5 | -ζ53 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ12 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | 1 | 1 | ζ54 | ζ5 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ13 | 1 | -1 | -i | i | ζ54 | ζ5 | ζ52 | ζ53 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | 1 | 1 | ζ4ζ54 | ζ43ζ5 | ζ4ζ5 | ζ43ζ52 | ζ4ζ52 | ζ43ζ53 | ζ4ζ53 | ζ43ζ54 | -1 | -1 | -i | -i | i | i | linear of order 20 |
ρ14 | 1 | -1 | -i | i | ζ5 | ζ54 | ζ53 | ζ52 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | 1 | 1 | ζ4ζ5 | ζ43ζ54 | ζ4ζ54 | ζ43ζ53 | ζ4ζ53 | ζ43ζ52 | ζ4ζ52 | ζ43ζ5 | -1 | -1 | -i | -i | i | i | linear of order 20 |
ρ15 | 1 | -1 | i | -i | ζ52 | ζ53 | ζ5 | ζ54 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | 1 | 1 | ζ43ζ52 | ζ4ζ53 | ζ43ζ53 | ζ4ζ5 | ζ43ζ5 | ζ4ζ54 | ζ43ζ54 | ζ4ζ52 | -1 | -1 | i | i | -i | -i | linear of order 20 |
ρ16 | 1 | -1 | i | -i | ζ53 | ζ52 | ζ54 | ζ5 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | 1 | 1 | ζ43ζ53 | ζ4ζ52 | ζ43ζ52 | ζ4ζ54 | ζ43ζ54 | ζ4ζ5 | ζ43ζ5 | ζ4ζ53 | -1 | -1 | i | i | -i | -i | linear of order 20 |
ρ17 | 1 | -1 | i | -i | ζ5 | ζ54 | ζ53 | ζ52 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | 1 | 1 | ζ43ζ5 | ζ4ζ54 | ζ43ζ54 | ζ4ζ53 | ζ43ζ53 | ζ4ζ52 | ζ43ζ52 | ζ4ζ5 | -1 | -1 | i | i | -i | -i | linear of order 20 |
ρ18 | 1 | -1 | -i | i | ζ52 | ζ53 | ζ5 | ζ54 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | 1 | 1 | ζ4ζ52 | ζ43ζ53 | ζ4ζ53 | ζ43ζ5 | ζ4ζ5 | ζ43ζ54 | ζ4ζ54 | ζ43ζ52 | -1 | -1 | -i | -i | i | i | linear of order 20 |
ρ19 | 1 | -1 | i | -i | ζ54 | ζ5 | ζ52 | ζ53 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | 1 | 1 | ζ43ζ54 | ζ4ζ5 | ζ43ζ5 | ζ4ζ52 | ζ43ζ52 | ζ4ζ53 | ζ43ζ53 | ζ4ζ54 | -1 | -1 | i | i | -i | -i | linear of order 20 |
ρ20 | 1 | -1 | -i | i | ζ53 | ζ52 | ζ54 | ζ5 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | 1 | 1 | ζ4ζ53 | ζ43ζ52 | ζ4ζ52 | ζ43ζ54 | ζ4ζ54 | ζ43ζ5 | ζ4ζ5 | ζ43ζ53 | -1 | -1 | -i | -i | i | i | linear of order 20 |
ρ21 | 5 | 5 | -5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 1-√-11/2 | 1+√-11/2 | 1+√-11/2 | 1-√-11/2 | complex lifted from C2×C11⋊C5 |
ρ22 | 5 | 5 | -5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 1+√-11/2 | 1-√-11/2 | 1-√-11/2 | 1+√-11/2 | complex lifted from C2×C11⋊C5 |
ρ23 | 5 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | -1-√-11/2 | -1+√-11/2 | -1+√-11/2 | -1-√-11/2 | complex lifted from C11⋊C5 |
ρ24 | 5 | 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | -1+√-11/2 | -1-√-11/2 | -1-√-11/2 | -1+√-11/2 | complex lifted from C11⋊C5 |
ρ25 | 5 | -5 | 5i | -5i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-11/2 | 1+√-11/2 | ζ4ζ1110+ζ4ζ118+ζ4ζ117+ζ4ζ116+ζ4ζ112 | ζ4ζ119+ζ4ζ115+ζ4ζ114+ζ4ζ113+ζ4ζ11 | ζ43ζ119+ζ43ζ115+ζ43ζ114+ζ43ζ113+ζ43ζ11 | ζ43ζ1110+ζ43ζ118+ζ43ζ117+ζ43ζ116+ζ43ζ112 | complex faithful |
ρ26 | 5 | -5 | 5i | -5i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-11/2 | 1-√-11/2 | ζ4ζ119+ζ4ζ115+ζ4ζ114+ζ4ζ113+ζ4ζ11 | ζ4ζ1110+ζ4ζ118+ζ4ζ117+ζ4ζ116+ζ4ζ112 | ζ43ζ1110+ζ43ζ118+ζ43ζ117+ζ43ζ116+ζ43ζ112 | ζ43ζ119+ζ43ζ115+ζ43ζ114+ζ43ζ113+ζ43ζ11 | complex faithful |
ρ27 | 5 | -5 | -5i | 5i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-11/2 | 1+√-11/2 | ζ43ζ1110+ζ43ζ118+ζ43ζ117+ζ43ζ116+ζ43ζ112 | ζ43ζ119+ζ43ζ115+ζ43ζ114+ζ43ζ113+ζ43ζ11 | ζ4ζ119+ζ4ζ115+ζ4ζ114+ζ4ζ113+ζ4ζ11 | ζ4ζ1110+ζ4ζ118+ζ4ζ117+ζ4ζ116+ζ4ζ112 | complex faithful |
ρ28 | 5 | -5 | -5i | 5i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-11/2 | 1-√-11/2 | ζ43ζ119+ζ43ζ115+ζ43ζ114+ζ43ζ113+ζ43ζ11 | ζ43ζ1110+ζ43ζ118+ζ43ζ117+ζ43ζ116+ζ43ζ112 | ζ4ζ1110+ζ4ζ118+ζ4ζ117+ζ4ζ116+ζ4ζ112 | ζ4ζ119+ζ4ζ115+ζ4ζ114+ζ4ζ113+ζ4ζ11 | complex faithful |
(1 34 12 23)(2 35 13 24)(3 36 14 25)(4 37 15 26)(5 38 16 27)(6 39 17 28)(7 40 18 29)(8 41 19 30)(9 42 20 31)(10 43 21 32)(11 44 22 33)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)
(2 5 6 10 4)(3 9 11 8 7)(13 16 17 21 15)(14 20 22 19 18)(24 27 28 32 26)(25 31 33 30 29)(35 38 39 43 37)(36 42 44 41 40)
G:=sub<Sym(44)| (1,34,12,23)(2,35,13,24)(3,36,14,25)(4,37,15,26)(5,38,16,27)(6,39,17,28)(7,40,18,29)(8,41,19,30)(9,42,20,31)(10,43,21,32)(11,44,22,33), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40)>;
G:=Group( (1,34,12,23)(2,35,13,24)(3,36,14,25)(4,37,15,26)(5,38,16,27)(6,39,17,28)(7,40,18,29)(8,41,19,30)(9,42,20,31)(10,43,21,32)(11,44,22,33), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40) );
G=PermutationGroup([[(1,34,12,23),(2,35,13,24),(3,36,14,25),(4,37,15,26),(5,38,16,27),(6,39,17,28),(7,40,18,29),(8,41,19,30),(9,42,20,31),(10,43,21,32),(11,44,22,33)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44)], [(2,5,6,10,4),(3,9,11,8,7),(13,16,17,21,15),(14,20,22,19,18),(24,27,28,32,26),(25,31,33,30,29),(35,38,39,43,37),(36,42,44,41,40)]])
C4×C11⋊C5 is a maximal subgroup of
C11⋊C40 C4.F11 D44⋊C5
Matrix representation of C4×C11⋊C5 ►in GL6(𝔽661)
555 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 43 | 2 | 615 | 44 | 1 |
0 | 44 | 2 | 615 | 44 | 1 |
0 | 43 | 3 | 615 | 44 | 1 |
0 | 43 | 2 | 616 | 44 | 1 |
0 | 43 | 2 | 615 | 45 | 1 |
247 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 45 | 618 | 659 | 46 | 617 |
0 | 46 | 617 | 43 | 2 | 616 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(661))| [555,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,43,44,43,43,43,0,2,2,3,2,2,0,615,615,615,616,615,0,44,44,44,44,45,0,1,1,1,1,1],[247,0,0,0,0,0,0,0,45,46,1,0,0,0,618,617,0,0,0,1,659,43,0,0,0,0,46,2,0,1,0,0,617,616,0,0] >;
C4×C11⋊C5 in GAP, Magma, Sage, TeX
C_4\times C_{11}\rtimes C_5
% in TeX
G:=Group("C4xC11:C5");
// GroupNames label
G:=SmallGroup(220,2);
// by ID
G=gap.SmallGroup(220,2);
# by ID
G:=PCGroup([4,-2,-5,-2,-11,40,647]);
// Polycyclic
G:=Group<a,b,c|a^4=b^11=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations
Export
Subgroup lattice of C4×C11⋊C5 in TeX
Character table of C4×C11⋊C5 in TeX