Copied to
clipboard

G = C4⋊C436D14order 448 = 26·7

2nd semidirect product of C4⋊C4 and D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C436D14, (C2×D28)⋊11C4, C4.62(C2×D28), (C2×C4).46D28, D28.25(C2×C4), (C2×C28).472D4, C28.142(C2×D4), C42⋊C21D7, C14.D827C2, C4.23(D14⋊C4), C28.64(C22×C4), (C22×C14).74D4, C2.2(D4⋊D14), C28.47(C22⋊C4), (C2×C28).328C23, (C22×D28).12C2, (C22×C4).110D14, C23.54(C7⋊D4), C72(C23.37D4), C14.105(C8⋊C22), C22.23(D14⋊C4), (C2×D28).234C22, (C22×C28).150C22, C4.51(C2×C4×D7), (C2×C7⋊C8)⋊4C22, (C2×C4).44(C4×D7), (C7×C4⋊C4)⋊41C22, (C2×C28).91(C2×C4), C2.17(C2×D14⋊C4), (C2×C4.Dic7)⋊9C2, (C7×C42⋊C2)⋊1C2, (C2×C14).457(C2×D4), C14.44(C2×C22⋊C4), C22.72(C2×C7⋊D4), (C2×C4).241(C7⋊D4), (C2×C4).428(C22×D7), (C2×C14).14(C22⋊C4), SmallGroup(448,535)

Series: Derived Chief Lower central Upper central

C1C28 — C4⋊C436D14
C1C7C14C2×C14C2×C28C2×D28C22×D28 — C4⋊C436D14
C7C14C28 — C4⋊C436D14
C1C22C22×C4C42⋊C2

Generators and relations for C4⋊C436D14
 G = < a,b,c,d | a4=b4=c14=d2=1, bab-1=dad=a-1, ac=ca, cbc-1=a2b, dbd=ab-1, dcd=c-1 >

Subgroups: 1268 in 190 conjugacy classes, 63 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C24, C28, C28, C28, D14, C2×C14, C2×C14, C2×C14, D4⋊C4, C42⋊C2, C2×M4(2), C22×D4, C7⋊C8, D28, D28, C2×C28, C2×C28, C2×C28, C22×D7, C22×C14, C23.37D4, C2×C7⋊C8, C4.Dic7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×D28, C2×D28, C22×C28, C23×D7, C14.D8, C2×C4.Dic7, C7×C42⋊C2, C22×D28, C4⋊C436D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C2×C22⋊C4, C8⋊C22, C4×D7, D28, C7⋊D4, C22×D7, C23.37D4, D14⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, C2×D14⋊C4, D4⋊D14, C4⋊C436D14

Smallest permutation representation of C4⋊C436D14
On 112 points
Generators in S112
(1 47 10 54)(2 48 11 55)(3 49 12 56)(4 43 13 50)(5 44 14 51)(6 45 8 52)(7 46 9 53)(15 36 22 29)(16 37 23 30)(17 38 24 31)(18 39 25 32)(19 40 26 33)(20 41 27 34)(21 42 28 35)(57 101 64 108)(58 102 65 109)(59 103 66 110)(60 104 67 111)(61 105 68 112)(62 106 69 99)(63 107 70 100)(71 93 78 86)(72 94 79 87)(73 95 80 88)(74 96 81 89)(75 97 82 90)(76 98 83 91)(77 85 84 92)
(1 85 40 64)(2 93 41 58)(3 87 42 66)(4 95 36 60)(5 89 37 68)(6 97 38 62)(7 91 39 70)(8 90 31 69)(9 98 32 63)(10 92 33 57)(11 86 34 65)(12 94 35 59)(13 88 29 67)(14 96 30 61)(15 104 50 80)(16 112 51 74)(17 106 52 82)(18 100 53 76)(19 108 54 84)(20 102 55 78)(21 110 56 72)(22 111 43 73)(23 105 44 81)(24 99 45 75)(25 107 46 83)(26 101 47 77)(27 109 48 71)(28 103 49 79)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 11)(9 10)(12 14)(15 22)(16 28)(17 27)(18 26)(19 25)(20 24)(21 23)(30 35)(31 34)(32 33)(37 42)(38 41)(39 40)(43 50)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)(57 76)(58 75)(59 74)(60 73)(61 72)(62 71)(63 84)(64 83)(65 82)(66 81)(67 80)(68 79)(69 78)(70 77)(85 107)(86 106)(87 105)(88 104)(89 103)(90 102)(91 101)(92 100)(93 99)(94 112)(95 111)(96 110)(97 109)(98 108)

G:=sub<Sym(112)| (1,47,10,54)(2,48,11,55)(3,49,12,56)(4,43,13,50)(5,44,14,51)(6,45,8,52)(7,46,9,53)(15,36,22,29)(16,37,23,30)(17,38,24,31)(18,39,25,32)(19,40,26,33)(20,41,27,34)(21,42,28,35)(57,101,64,108)(58,102,65,109)(59,103,66,110)(60,104,67,111)(61,105,68,112)(62,106,69,99)(63,107,70,100)(71,93,78,86)(72,94,79,87)(73,95,80,88)(74,96,81,89)(75,97,82,90)(76,98,83,91)(77,85,84,92), (1,85,40,64)(2,93,41,58)(3,87,42,66)(4,95,36,60)(5,89,37,68)(6,97,38,62)(7,91,39,70)(8,90,31,69)(9,98,32,63)(10,92,33,57)(11,86,34,65)(12,94,35,59)(13,88,29,67)(14,96,30,61)(15,104,50,80)(16,112,51,74)(17,106,52,82)(18,100,53,76)(19,108,54,84)(20,102,55,78)(21,110,56,72)(22,111,43,73)(23,105,44,81)(24,99,45,75)(25,107,46,83)(26,101,47,77)(27,109,48,71)(28,103,49,79), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,11)(9,10)(12,14)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(43,50)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(57,76)(58,75)(59,74)(60,73)(61,72)(62,71)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(85,107)(86,106)(87,105)(88,104)(89,103)(90,102)(91,101)(92,100)(93,99)(94,112)(95,111)(96,110)(97,109)(98,108)>;

G:=Group( (1,47,10,54)(2,48,11,55)(3,49,12,56)(4,43,13,50)(5,44,14,51)(6,45,8,52)(7,46,9,53)(15,36,22,29)(16,37,23,30)(17,38,24,31)(18,39,25,32)(19,40,26,33)(20,41,27,34)(21,42,28,35)(57,101,64,108)(58,102,65,109)(59,103,66,110)(60,104,67,111)(61,105,68,112)(62,106,69,99)(63,107,70,100)(71,93,78,86)(72,94,79,87)(73,95,80,88)(74,96,81,89)(75,97,82,90)(76,98,83,91)(77,85,84,92), (1,85,40,64)(2,93,41,58)(3,87,42,66)(4,95,36,60)(5,89,37,68)(6,97,38,62)(7,91,39,70)(8,90,31,69)(9,98,32,63)(10,92,33,57)(11,86,34,65)(12,94,35,59)(13,88,29,67)(14,96,30,61)(15,104,50,80)(16,112,51,74)(17,106,52,82)(18,100,53,76)(19,108,54,84)(20,102,55,78)(21,110,56,72)(22,111,43,73)(23,105,44,81)(24,99,45,75)(25,107,46,83)(26,101,47,77)(27,109,48,71)(28,103,49,79), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,11)(9,10)(12,14)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(43,50)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(57,76)(58,75)(59,74)(60,73)(61,72)(62,71)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)(85,107)(86,106)(87,105)(88,104)(89,103)(90,102)(91,101)(92,100)(93,99)(94,112)(95,111)(96,110)(97,109)(98,108) );

G=PermutationGroup([[(1,47,10,54),(2,48,11,55),(3,49,12,56),(4,43,13,50),(5,44,14,51),(6,45,8,52),(7,46,9,53),(15,36,22,29),(16,37,23,30),(17,38,24,31),(18,39,25,32),(19,40,26,33),(20,41,27,34),(21,42,28,35),(57,101,64,108),(58,102,65,109),(59,103,66,110),(60,104,67,111),(61,105,68,112),(62,106,69,99),(63,107,70,100),(71,93,78,86),(72,94,79,87),(73,95,80,88),(74,96,81,89),(75,97,82,90),(76,98,83,91),(77,85,84,92)], [(1,85,40,64),(2,93,41,58),(3,87,42,66),(4,95,36,60),(5,89,37,68),(6,97,38,62),(7,91,39,70),(8,90,31,69),(9,98,32,63),(10,92,33,57),(11,86,34,65),(12,94,35,59),(13,88,29,67),(14,96,30,61),(15,104,50,80),(16,112,51,74),(17,106,52,82),(18,100,53,76),(19,108,54,84),(20,102,55,78),(21,110,56,72),(22,111,43,73),(23,105,44,81),(24,99,45,75),(25,107,46,83),(26,101,47,77),(27,109,48,71),(28,103,49,79)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,11),(9,10),(12,14),(15,22),(16,28),(17,27),(18,26),(19,25),(20,24),(21,23),(30,35),(31,34),(32,33),(37,42),(38,41),(39,40),(43,50),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51),(57,76),(58,75),(59,74),(60,73),(61,72),(62,71),(63,84),(64,83),(65,82),(66,81),(67,80),(68,79),(69,78),(70,77),(85,107),(86,106),(87,105),(88,104),(89,103),(90,102),(91,101),(92,100),(93,99),(94,112),(95,111),(96,110),(97,109),(98,108)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28AP
order122222222244444444777888814···1414···1428···2828···28
size1111222828282822224444222282828282···24···42···24···4

82 irreducible representations

dim11111122222222244
type+++++++++++++
imageC1C2C2C2C2C4D4D4D7D14D14C4×D7D28C7⋊D4C7⋊D4C8⋊C22D4⋊D14
kernelC4⋊C436D14C14.D8C2×C4.Dic7C7×C42⋊C2C22×D28C2×D28C2×C28C22×C14C42⋊C2C4⋊C4C22×C4C2×C4C2×C4C2×C4C23C14C2
# reps14111831363121266212

Matrix representation of C4⋊C436D14 in GL6(𝔽113)

100000
010000
001043800
0093900
00109365875
007703855
,
3410000
1101100000
002946070
0021844358
008071967
0042046104
,
11200000
01120000
00253300
005411200
0089458080
001394339
,
100000
661120000
0079900
00603400
0099414109
00421932109

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,104,93,109,77,0,0,38,9,36,0,0,0,0,0,58,38,0,0,0,0,75,55],[3,110,0,0,0,0,41,110,0,0,0,0,0,0,29,21,80,42,0,0,46,84,71,0,0,0,0,43,9,46,0,0,70,58,67,104],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,25,54,89,13,0,0,33,112,45,94,0,0,0,0,80,33,0,0,0,0,80,9],[1,66,0,0,0,0,0,112,0,0,0,0,0,0,79,60,99,42,0,0,9,34,41,19,0,0,0,0,4,32,0,0,0,0,109,109] >;

C4⋊C436D14 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{36}D_{14}
% in TeX

G:=Group("C4:C4:36D14");
// GroupNames label

G:=SmallGroup(448,535);
// by ID

G=gap.SmallGroup(448,535);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,422,387,58,1684,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d=a*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽