Copied to
clipboard

G = C56.9Q8order 448 = 26·7

9th non-split extension by C56 of Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C56.9Q8, C56.90D4, C8.9Dic14, M5(2).2D7, C7⋊C8.1C8, C28.5(C2×C8), C4.13(C8×D7), C14.9(C4⋊C8), C72(C8.C8), C28.41(C4⋊C4), (C2×C8).266D14, C8.50(C7⋊D4), (C4×Dic7).4C4, C28.C8.7C2, C2.5(Dic7⋊C8), (C8×Dic7).15C2, (C7×M5(2)).4C2, (C2×C14).3M4(2), C4.28(Dic7⋊C4), (C2×C56).218C22, C22.5(C8⋊D7), (C2×C7⋊C8).6C4, (C2×C28).50(C2×C4), (C2×C4).135(C4×D7), SmallGroup(448,68)

Series: Derived Chief Lower central Upper central

C1C28 — C56.9Q8
C1C7C14C28C56C2×C56C8×Dic7 — C56.9Q8
C7C14C28 — C56.9Q8
C1C8C2×C8M5(2)

Generators and relations for C56.9Q8
 G = < a,b,c | a56=1, b4=a14, c2=a35b2, bab-1=a29, cac-1=a41, cbc-1=a35b3 >

2C2
14C4
14C4
2C14
7C8
7C8
14C2×C4
2Dic7
2Dic7
2C16
7C42
7C2×C8
14C16
2C2×Dic7
7M5(2)
7C4×C8
2C7⋊C16
2C112
7C8.C8

Smallest permutation representation of C56.9Q8
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 76 8 111 15 90 22 69 29 104 36 83 43 62 50 97)(2 105 9 84 16 63 23 98 30 77 37 112 44 91 51 70)(3 78 10 57 17 92 24 71 31 106 38 85 45 64 52 99)(4 107 11 86 18 65 25 100 32 79 39 58 46 93 53 72)(5 80 12 59 19 94 26 73 33 108 40 87 47 66 54 101)(6 109 13 88 20 67 27 102 34 81 41 60 48 95 55 74)(7 82 14 61 21 96 28 75 35 110 42 89 49 68 56 103)
(1 50 43 36 29 22 15 8)(2 35 44 21 30 7 16 49)(3 20 45 6 31 48 17 34)(4 5 46 47 32 33 18 19)(9 42 51 28 37 14 23 56)(10 27 52 13 38 55 24 41)(11 12 53 54 39 40 25 26)(57 60 71 74 85 88 99 102)(58 101 72 59 86 73 100 87)(61 112 75 70 89 84 103 98)(62 97 76 111 90 69 104 83)(63 82 77 96 91 110 105 68)(64 67 78 81 92 95 106 109)(65 108 79 66 93 80 107 94)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,76,8,111,15,90,22,69,29,104,36,83,43,62,50,97)(2,105,9,84,16,63,23,98,30,77,37,112,44,91,51,70)(3,78,10,57,17,92,24,71,31,106,38,85,45,64,52,99)(4,107,11,86,18,65,25,100,32,79,39,58,46,93,53,72)(5,80,12,59,19,94,26,73,33,108,40,87,47,66,54,101)(6,109,13,88,20,67,27,102,34,81,41,60,48,95,55,74)(7,82,14,61,21,96,28,75,35,110,42,89,49,68,56,103), (1,50,43,36,29,22,15,8)(2,35,44,21,30,7,16,49)(3,20,45,6,31,48,17,34)(4,5,46,47,32,33,18,19)(9,42,51,28,37,14,23,56)(10,27,52,13,38,55,24,41)(11,12,53,54,39,40,25,26)(57,60,71,74,85,88,99,102)(58,101,72,59,86,73,100,87)(61,112,75,70,89,84,103,98)(62,97,76,111,90,69,104,83)(63,82,77,96,91,110,105,68)(64,67,78,81,92,95,106,109)(65,108,79,66,93,80,107,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,76,8,111,15,90,22,69,29,104,36,83,43,62,50,97)(2,105,9,84,16,63,23,98,30,77,37,112,44,91,51,70)(3,78,10,57,17,92,24,71,31,106,38,85,45,64,52,99)(4,107,11,86,18,65,25,100,32,79,39,58,46,93,53,72)(5,80,12,59,19,94,26,73,33,108,40,87,47,66,54,101)(6,109,13,88,20,67,27,102,34,81,41,60,48,95,55,74)(7,82,14,61,21,96,28,75,35,110,42,89,49,68,56,103), (1,50,43,36,29,22,15,8)(2,35,44,21,30,7,16,49)(3,20,45,6,31,48,17,34)(4,5,46,47,32,33,18,19)(9,42,51,28,37,14,23,56)(10,27,52,13,38,55,24,41)(11,12,53,54,39,40,25,26)(57,60,71,74,85,88,99,102)(58,101,72,59,86,73,100,87)(61,112,75,70,89,84,103,98)(62,97,76,111,90,69,104,83)(63,82,77,96,91,110,105,68)(64,67,78,81,92,95,106,109)(65,108,79,66,93,80,107,94) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,76,8,111,15,90,22,69,29,104,36,83,43,62,50,97),(2,105,9,84,16,63,23,98,30,77,37,112,44,91,51,70),(3,78,10,57,17,92,24,71,31,106,38,85,45,64,52,99),(4,107,11,86,18,65,25,100,32,79,39,58,46,93,53,72),(5,80,12,59,19,94,26,73,33,108,40,87,47,66,54,101),(6,109,13,88,20,67,27,102,34,81,41,60,48,95,55,74),(7,82,14,61,21,96,28,75,35,110,42,89,49,68,56,103)], [(1,50,43,36,29,22,15,8),(2,35,44,21,30,7,16,49),(3,20,45,6,31,48,17,34),(4,5,46,47,32,33,18,19),(9,42,51,28,37,14,23,56),(10,27,52,13,38,55,24,41),(11,12,53,54,39,40,25,26),(57,60,71,74,85,88,99,102),(58,101,72,59,86,73,100,87),(61,112,75,70,89,84,103,98),(62,97,76,111,90,69,104,83),(63,82,77,96,91,110,105,68),(64,67,78,81,92,95,106,109),(65,108,79,66,93,80,107,94)]])

88 conjugacy classes

class 1 2A2B4A4B4C4D4E4F4G7A7B7C8A8B8C8D8E8F8G8H8I8J14A14B14C14D14E14F16A16B16C16D16E16F16G16H28A···28F28G28H28I56A···56L56M···56R112A···112X
order12244444447778888888888141414141414161616161616161628···2828282856···5656···56112···112
size11211214141414222111122141414142224444444282828282···24442···24···44···4

88 irreducible representations

dim1111111222222222224
type+++++-++-
imageC1C2C2C2C4C4C8D4Q8D7M4(2)D14Dic14C7⋊D4C4×D7C8.C8C8×D7C8⋊D7C56.9Q8
kernelC56.9Q8C28.C8C8×Dic7C7×M5(2)C2×C7⋊C8C4×Dic7C7⋊C8C56C56M5(2)C2×C14C2×C8C8C8C2×C4C7C4C22C1
# reps1111228113236668121212

Matrix representation of C56.9Q8 in GL4(𝔽113) generated by

24100
112000
00950
001018
,
112000
011200
001036
00109103
,
1038900
1031000
00950
004369
G:=sub<GL(4,GF(113))| [24,112,0,0,1,0,0,0,0,0,95,10,0,0,0,18],[112,0,0,0,0,112,0,0,0,0,10,109,0,0,36,103],[103,103,0,0,89,10,0,0,0,0,95,43,0,0,0,69] >;

C56.9Q8 in GAP, Magma, Sage, TeX

C_{56}._9Q_8
% in TeX

G:=Group("C56.9Q8");
// GroupNames label

G:=SmallGroup(448,68);
// by ID

G=gap.SmallGroup(448,68);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,141,36,100,570,136,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=1,b^4=a^14,c^2=a^35*b^2,b*a*b^-1=a^29,c*a*c^-1=a^41,c*b*c^-1=a^35*b^3>;
// generators/relations

Export

Subgroup lattice of C56.9Q8 in TeX

׿
×
𝔽