metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C56.9Q8, C56.90D4, C8.9Dic14, M5(2).2D7, C7⋊C8.1C8, C28.5(C2×C8), C4.13(C8×D7), C14.9(C4⋊C8), C7⋊2(C8.C8), C28.41(C4⋊C4), (C2×C8).266D14, C8.50(C7⋊D4), (C4×Dic7).4C4, C28.C8.7C2, C2.5(Dic7⋊C8), (C8×Dic7).15C2, (C7×M5(2)).4C2, (C2×C14).3M4(2), C4.28(Dic7⋊C4), (C2×C56).218C22, C22.5(C8⋊D7), (C2×C7⋊C8).6C4, (C2×C28).50(C2×C4), (C2×C4).135(C4×D7), SmallGroup(448,68)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C56.9Q8
G = < a,b,c | a56=1, b4=a14, c2=a35b2, bab-1=a29, cac-1=a41, cbc-1=a35b3 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 76 8 111 15 90 22 69 29 104 36 83 43 62 50 97)(2 105 9 84 16 63 23 98 30 77 37 112 44 91 51 70)(3 78 10 57 17 92 24 71 31 106 38 85 45 64 52 99)(4 107 11 86 18 65 25 100 32 79 39 58 46 93 53 72)(5 80 12 59 19 94 26 73 33 108 40 87 47 66 54 101)(6 109 13 88 20 67 27 102 34 81 41 60 48 95 55 74)(7 82 14 61 21 96 28 75 35 110 42 89 49 68 56 103)
(1 50 43 36 29 22 15 8)(2 35 44 21 30 7 16 49)(3 20 45 6 31 48 17 34)(4 5 46 47 32 33 18 19)(9 42 51 28 37 14 23 56)(10 27 52 13 38 55 24 41)(11 12 53 54 39 40 25 26)(57 60 71 74 85 88 99 102)(58 101 72 59 86 73 100 87)(61 112 75 70 89 84 103 98)(62 97 76 111 90 69 104 83)(63 82 77 96 91 110 105 68)(64 67 78 81 92 95 106 109)(65 108 79 66 93 80 107 94)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,76,8,111,15,90,22,69,29,104,36,83,43,62,50,97)(2,105,9,84,16,63,23,98,30,77,37,112,44,91,51,70)(3,78,10,57,17,92,24,71,31,106,38,85,45,64,52,99)(4,107,11,86,18,65,25,100,32,79,39,58,46,93,53,72)(5,80,12,59,19,94,26,73,33,108,40,87,47,66,54,101)(6,109,13,88,20,67,27,102,34,81,41,60,48,95,55,74)(7,82,14,61,21,96,28,75,35,110,42,89,49,68,56,103), (1,50,43,36,29,22,15,8)(2,35,44,21,30,7,16,49)(3,20,45,6,31,48,17,34)(4,5,46,47,32,33,18,19)(9,42,51,28,37,14,23,56)(10,27,52,13,38,55,24,41)(11,12,53,54,39,40,25,26)(57,60,71,74,85,88,99,102)(58,101,72,59,86,73,100,87)(61,112,75,70,89,84,103,98)(62,97,76,111,90,69,104,83)(63,82,77,96,91,110,105,68)(64,67,78,81,92,95,106,109)(65,108,79,66,93,80,107,94)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,76,8,111,15,90,22,69,29,104,36,83,43,62,50,97)(2,105,9,84,16,63,23,98,30,77,37,112,44,91,51,70)(3,78,10,57,17,92,24,71,31,106,38,85,45,64,52,99)(4,107,11,86,18,65,25,100,32,79,39,58,46,93,53,72)(5,80,12,59,19,94,26,73,33,108,40,87,47,66,54,101)(6,109,13,88,20,67,27,102,34,81,41,60,48,95,55,74)(7,82,14,61,21,96,28,75,35,110,42,89,49,68,56,103), (1,50,43,36,29,22,15,8)(2,35,44,21,30,7,16,49)(3,20,45,6,31,48,17,34)(4,5,46,47,32,33,18,19)(9,42,51,28,37,14,23,56)(10,27,52,13,38,55,24,41)(11,12,53,54,39,40,25,26)(57,60,71,74,85,88,99,102)(58,101,72,59,86,73,100,87)(61,112,75,70,89,84,103,98)(62,97,76,111,90,69,104,83)(63,82,77,96,91,110,105,68)(64,67,78,81,92,95,106,109)(65,108,79,66,93,80,107,94) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,76,8,111,15,90,22,69,29,104,36,83,43,62,50,97),(2,105,9,84,16,63,23,98,30,77,37,112,44,91,51,70),(3,78,10,57,17,92,24,71,31,106,38,85,45,64,52,99),(4,107,11,86,18,65,25,100,32,79,39,58,46,93,53,72),(5,80,12,59,19,94,26,73,33,108,40,87,47,66,54,101),(6,109,13,88,20,67,27,102,34,81,41,60,48,95,55,74),(7,82,14,61,21,96,28,75,35,110,42,89,49,68,56,103)], [(1,50,43,36,29,22,15,8),(2,35,44,21,30,7,16,49),(3,20,45,6,31,48,17,34),(4,5,46,47,32,33,18,19),(9,42,51,28,37,14,23,56),(10,27,52,13,38,55,24,41),(11,12,53,54,39,40,25,26),(57,60,71,74,85,88,99,102),(58,101,72,59,86,73,100,87),(61,112,75,70,89,84,103,98),(62,97,76,111,90,69,104,83),(63,82,77,96,91,110,105,68),(64,67,78,81,92,95,106,109),(65,108,79,66,93,80,107,94)]])
88 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 14A | 14B | 14C | 14D | 14E | 14F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | 28A | ··· | 28F | 28G | 28H | 28I | 56A | ··· | 56L | 56M | ··· | 56R | 112A | ··· | 112X |
order | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 14 | 14 | 14 | 14 | 14 | 14 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 28 | ··· | 28 | 28 | 28 | 28 | 56 | ··· | 56 | 56 | ··· | 56 | 112 | ··· | 112 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 14 | 14 | 14 | 14 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 14 | 14 | 14 | 14 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 28 | 28 | 28 | 28 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | - | + | + | - | ||||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | D4 | Q8 | D7 | M4(2) | D14 | Dic14 | C7⋊D4 | C4×D7 | C8.C8 | C8×D7 | C8⋊D7 | C56.9Q8 |
kernel | C56.9Q8 | C28.C8 | C8×Dic7 | C7×M5(2) | C2×C7⋊C8 | C4×Dic7 | C7⋊C8 | C56 | C56 | M5(2) | C2×C14 | C2×C8 | C8 | C8 | C2×C4 | C7 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 1 | 1 | 3 | 2 | 3 | 6 | 6 | 6 | 8 | 12 | 12 | 12 |
Matrix representation of C56.9Q8 ►in GL4(𝔽113) generated by
24 | 1 | 0 | 0 |
112 | 0 | 0 | 0 |
0 | 0 | 95 | 0 |
0 | 0 | 10 | 18 |
112 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 10 | 36 |
0 | 0 | 109 | 103 |
103 | 89 | 0 | 0 |
103 | 10 | 0 | 0 |
0 | 0 | 95 | 0 |
0 | 0 | 43 | 69 |
G:=sub<GL(4,GF(113))| [24,112,0,0,1,0,0,0,0,0,95,10,0,0,0,18],[112,0,0,0,0,112,0,0,0,0,10,109,0,0,36,103],[103,103,0,0,89,10,0,0,0,0,95,43,0,0,0,69] >;
C56.9Q8 in GAP, Magma, Sage, TeX
C_{56}._9Q_8
% in TeX
G:=Group("C56.9Q8");
// GroupNames label
G:=SmallGroup(448,68);
// by ID
G=gap.SmallGroup(448,68);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,141,36,100,570,136,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^56=1,b^4=a^14,c^2=a^35*b^2,b*a*b^-1=a^29,c*a*c^-1=a^41,c*b*c^-1=a^35*b^3>;
// generators/relations
Export