Copied to
clipboard

G = C112⋊C4order 448 = 26·7

2nd semidirect product of C112 and C4 acting faithfully

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C1122C4, C162Dic7, C28.18C42, M5(2).3D7, C28.5M4(2), C7⋊C164C4, C8.33(C4×D7), C72(C16⋊C4), C56.77(C2×C4), (C2×C8).151D14, C4.9(C8⋊D7), (C4×Dic7).3C4, C56⋊C4.10C2, C8.20(C2×Dic7), C4.23(C4×Dic7), C14.5(C8⋊C4), C2.4(C56⋊C4), C28.C8.8C2, (C7×M5(2)).2C2, (C2×C14).4M4(2), (C2×C56).219C22, C22.6(C8⋊D7), (C2×C7⋊C8).1C4, (C2×C28).51(C2×C4), (C2×C4).136(C4×D7), SmallGroup(448,69)

Series: Derived Chief Lower central Upper central

C1C28 — C112⋊C4
C1C7C14C28C2×C28C2×C56C56⋊C4 — C112⋊C4
C7C28 — C112⋊C4
C1C4M5(2)

Generators and relations for C112⋊C4
 G = < a,b | a112=b4=1, bab-1=a13 >

2C2
28C4
2C14
14C8
14C2×C4
4Dic7
7C16
7C16
7C2×C8
7C42
2C7⋊C8
2C2×Dic7
7C8⋊C4
7M5(2)
7C16⋊C4

Smallest permutation representation of C112⋊C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 70 58 14)(3 27)(4 96 60 40)(5 53)(6 10 62 66)(7 79)(8 36 64 92)(9 105)(11 19)(12 88 68 32)(13 45)(15 71)(16 28 72 84)(17 97)(18 54 74 110)(20 80 76 24)(21 37)(22 106 78 50)(23 63)(25 89)(26 46 82 102)(30 98 86 42)(31 55)(33 81)(34 38 90 94)(35 107)(39 47)(41 73)(43 99)(44 56 100 112)(48 108 104 52)(49 65)(51 91)(59 83)(61 109)(67 75)(69 101)(77 93)(87 111)(95 103)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,70,58,14)(3,27)(4,96,60,40)(5,53)(6,10,62,66)(7,79)(8,36,64,92)(9,105)(11,19)(12,88,68,32)(13,45)(15,71)(16,28,72,84)(17,97)(18,54,74,110)(20,80,76,24)(21,37)(22,106,78,50)(23,63)(25,89)(26,46,82,102)(30,98,86,42)(31,55)(33,81)(34,38,90,94)(35,107)(39,47)(41,73)(43,99)(44,56,100,112)(48,108,104,52)(49,65)(51,91)(59,83)(61,109)(67,75)(69,101)(77,93)(87,111)(95,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,70,58,14)(3,27)(4,96,60,40)(5,53)(6,10,62,66)(7,79)(8,36,64,92)(9,105)(11,19)(12,88,68,32)(13,45)(15,71)(16,28,72,84)(17,97)(18,54,74,110)(20,80,76,24)(21,37)(22,106,78,50)(23,63)(25,89)(26,46,82,102)(30,98,86,42)(31,55)(33,81)(34,38,90,94)(35,107)(39,47)(41,73)(43,99)(44,56,100,112)(48,108,104,52)(49,65)(51,91)(59,83)(61,109)(67,75)(69,101)(77,93)(87,111)(95,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,70,58,14),(3,27),(4,96,60,40),(5,53),(6,10,62,66),(7,79),(8,36,64,92),(9,105),(11,19),(12,88,68,32),(13,45),(15,71),(16,28,72,84),(17,97),(18,54,74,110),(20,80,76,24),(21,37),(22,106,78,50),(23,63),(25,89),(26,46,82,102),(30,98,86,42),(31,55),(33,81),(34,38,90,94),(35,107),(39,47),(41,73),(43,99),(44,56,100,112),(48,108,104,52),(49,65),(51,91),(59,83),(61,109),(67,75),(69,101),(77,93),(87,111),(95,103)]])

82 conjugacy classes

class 1 2A2B4A4B4C4D4E7A7B7C8A8B8C8D8E8F14A14B14C14D14E14F16A16B16C16D16E16F16G16H28A···28F28G28H28I56A···56L56M···56R112A···112X
order12244444777888888141414141414161616161616161628···2828282856···5656···56112···112
size1121122828222222228282224444444282828282···24442···24···44···4

82 irreducible representations

dim1111111122222222244
type+++++-+
imageC1C2C2C2C4C4C4C4D7M4(2)M4(2)Dic7D14C4×D7C4×D7C8⋊D7C8⋊D7C16⋊C4C112⋊C4
kernelC112⋊C4C28.C8C56⋊C4C7×M5(2)C7⋊C16C112C2×C7⋊C8C4×Dic7M5(2)C28C2×C14C16C2×C8C8C2×C4C4C22C7C1
# reps1111442232263661212212

Matrix representation of C112⋊C4 in GL4(𝔽113) generated by

008888
002534
110300
110800
,
1000
7911200
00980
005815
G:=sub<GL(4,GF(113))| [0,0,110,110,0,0,3,8,88,25,0,0,88,34,0,0],[1,79,0,0,0,112,0,0,0,0,98,58,0,0,0,15] >;

C112⋊C4 in GAP, Magma, Sage, TeX

C_{112}\rtimes C_4
% in TeX

G:=Group("C112:C4");
// GroupNames label

G:=SmallGroup(448,69);
// by ID

G=gap.SmallGroup(448,69);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,253,64,387,1123,80,102,18822]);
// Polycyclic

G:=Group<a,b|a^112=b^4=1,b*a*b^-1=a^13>;
// generators/relations

Export

Subgroup lattice of C112⋊C4 in TeX

׿
×
𝔽