Copied to
clipboard

G = D2816D4order 448 = 26·7

4th semidirect product of D28 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2816D4, C4⋊C43D14, (C2×C14)⋊2D8, (C2×D4)⋊1D14, C4⋊D41D7, C4.98(D4×D7), C73(C22⋊D8), C14.54(C2×D8), (C2×C28).71D4, C222(D4⋊D7), C28.145(C2×D4), (D4×C14)⋊1C22, C14.D833C2, C14.44C22≀C2, (C22×D28)⋊13C2, (C22×C14).82D4, C28.55D410C2, (C2×C28).355C23, (C22×C4).119D14, C23.58(C7⋊D4), C2.12(D4⋊D14), C2.12(C23⋊D14), C14.114(C8⋊C22), (C2×D28).240C22, (C22×C28).159C22, (C2×D4⋊D7)⋊8C2, (C2×C7⋊C8)⋊5C22, C2.9(C2×D4⋊D7), (C7×C4⋊D4)⋊1C2, (C7×C4⋊C4)⋊5C22, (C2×C14).486(C2×D4), (C2×C4).49(C7⋊D4), (C2×C4).455(C22×D7), C22.161(C2×C7⋊D4), SmallGroup(448,570)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D2816D4
C1C7C14C28C2×C28C2×D28C22×D28 — D2816D4
C7C14C2×C28 — D2816D4
C1C22C22×C4C4⋊D4

Generators and relations for D2816D4
 G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, cac-1=a15, ad=da, cbc-1=a7b, bd=db, dcd=c-1 >

Subgroups: 1356 in 198 conjugacy classes, 47 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, C24, C28, C28, D14, C2×C14, C2×C14, C2×C14, C22⋊C8, D4⋊C4, C4⋊D4, C2×D8, C22×D4, C7⋊C8, D28, D28, C2×C28, C2×C28, C7×D4, C22×D7, C22×C14, C22×C14, C22⋊D8, C2×C7⋊C8, D4⋊D7, C7×C22⋊C4, C7×C4⋊C4, C2×D28, C2×D28, C22×C28, D4×C14, D4×C14, C23×D7, C14.D8, C28.55D4, C2×D4⋊D7, C7×C4⋊D4, C22×D28, D2816D4
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, C22≀C2, C2×D8, C8⋊C22, C7⋊D4, C22×D7, C22⋊D8, D4⋊D7, D4×D7, C2×C7⋊D4, C2×D4⋊D7, C23⋊D14, D4⋊D14, D2816D4

Smallest permutation representation of D2816D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 103)(2 102)(3 101)(4 100)(5 99)(6 98)(7 97)(8 96)(9 95)(10 94)(11 93)(12 92)(13 91)(14 90)(15 89)(16 88)(17 87)(18 86)(19 85)(20 112)(21 111)(22 110)(23 109)(24 108)(25 107)(26 106)(27 105)(28 104)(29 64)(30 63)(31 62)(32 61)(33 60)(34 59)(35 58)(36 57)(37 84)(38 83)(39 82)(40 81)(41 80)(42 79)(43 78)(44 77)(45 76)(46 75)(47 74)(48 73)(49 72)(50 71)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)
(1 30 104 71)(2 45 105 58)(3 32 106 73)(4 47 107 60)(5 34 108 75)(6 49 109 62)(7 36 110 77)(8 51 111 64)(9 38 112 79)(10 53 85 66)(11 40 86 81)(12 55 87 68)(13 42 88 83)(14 29 89 70)(15 44 90 57)(16 31 91 72)(17 46 92 59)(18 33 93 74)(19 48 94 61)(20 35 95 76)(21 50 96 63)(22 37 97 78)(23 52 98 65)(24 39 99 80)(25 54 100 67)(26 41 101 82)(27 56 102 69)(28 43 103 84)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 84)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(51 78)(52 79)(53 80)(54 81)(55 82)(56 83)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,103)(2,102)(3,101)(4,100)(5,99)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,89)(16,88)(17,87)(18,86)(19,85)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65), (1,30,104,71)(2,45,105,58)(3,32,106,73)(4,47,107,60)(5,34,108,75)(6,49,109,62)(7,36,110,77)(8,51,111,64)(9,38,112,79)(10,53,85,66)(11,40,86,81)(12,55,87,68)(13,42,88,83)(14,29,89,70)(15,44,90,57)(16,31,91,72)(17,46,92,59)(18,33,93,74)(19,48,94,61)(20,35,95,76)(21,50,96,63)(22,37,97,78)(23,52,98,65)(24,39,99,80)(25,54,100,67)(26,41,101,82)(27,56,102,69)(28,43,103,84), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,84)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,103)(2,102)(3,101)(4,100)(5,99)(6,98)(7,97)(8,96)(9,95)(10,94)(11,93)(12,92)(13,91)(14,90)(15,89)(16,88)(17,87)(18,86)(19,85)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65), (1,30,104,71)(2,45,105,58)(3,32,106,73)(4,47,107,60)(5,34,108,75)(6,49,109,62)(7,36,110,77)(8,51,111,64)(9,38,112,79)(10,53,85,66)(11,40,86,81)(12,55,87,68)(13,42,88,83)(14,29,89,70)(15,44,90,57)(16,31,91,72)(17,46,92,59)(18,33,93,74)(19,48,94,61)(20,35,95,76)(21,50,96,63)(22,37,97,78)(23,52,98,65)(24,39,99,80)(25,54,100,67)(26,41,101,82)(27,56,102,69)(28,43,103,84), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,84)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81)(55,82)(56,83)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,103),(2,102),(3,101),(4,100),(5,99),(6,98),(7,97),(8,96),(9,95),(10,94),(11,93),(12,92),(13,91),(14,90),(15,89),(16,88),(17,87),(18,86),(19,85),(20,112),(21,111),(22,110),(23,109),(24,108),(25,107),(26,106),(27,105),(28,104),(29,64),(30,63),(31,62),(32,61),(33,60),(34,59),(35,58),(36,57),(37,84),(38,83),(39,82),(40,81),(41,80),(42,79),(43,78),(44,77),(45,76),(46,75),(47,74),(48,73),(49,72),(50,71),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65)], [(1,30,104,71),(2,45,105,58),(3,32,106,73),(4,47,107,60),(5,34,108,75),(6,49,109,62),(7,36,110,77),(8,51,111,64),(9,38,112,79),(10,53,85,66),(11,40,86,81),(12,55,87,68),(13,42,88,83),(14,29,89,70),(15,44,90,57),(16,31,91,72),(17,46,92,59),(18,33,93,74),(19,48,94,61),(20,35,95,76),(21,50,96,63),(22,37,97,78),(23,52,98,65),(24,39,99,80),(25,54,100,67),(26,41,101,82),(27,56,102,69),(28,43,103,84)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,84),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(51,78),(52,79),(53,80),(54,81),(55,82),(56,83),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)]])

61 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D7A7B7C8A8B8C8D14A···14I14J···14O14P···14U28A···28L28M···28R
order122222222224444777888814···1414···1414···1428···2828···28
size1111228282828282248222282828282···24···48···84···48···8

61 irreducible representations

dim11111122222222224444
type++++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D7D8D14D14D14C7⋊D4C7⋊D4C8⋊C22D4×D7D4⋊D7D4⋊D14
kernelD2816D4C14.D8C28.55D4C2×D4⋊D7C7×C4⋊D4C22×D28D28C2×C28C22×C14C4⋊D4C2×C14C4⋊C4C22×C4C2×D4C2×C4C23C14C4C22C2
# reps12121141134333661666

Matrix representation of D2816D4 in GL6(𝔽113)

11200000
01120000
00243400
00103000
00002369
00004890
,
100000
01120000
0003400
0010000
000010
000037112
,
01120000
100000
001000
000100
00004105
000016109
,
100000
01120000
001000
000100
00001120
00000112

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,24,103,0,0,0,0,34,0,0,0,0,0,0,0,23,48,0,0,0,0,69,90],[1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,10,0,0,0,0,34,0,0,0,0,0,0,0,1,37,0,0,0,0,0,112],[0,1,0,0,0,0,112,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,16,0,0,0,0,105,109],[1,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112] >;

D2816D4 in GAP, Magma, Sage, TeX

D_{28}\rtimes_{16}D_4
% in TeX

G:=Group("D28:16D4");
// GroupNames label

G:=SmallGroup(448,570);
// by ID

G=gap.SmallGroup(448,570);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,219,1123,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=a^15,a*d=d*a,c*b*c^-1=a^7*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽