Extensions 1→N→G→Q→1 with N=C2×D4⋊D7 and Q=C2

Direct product G=N×Q with N=C2×D4⋊D7 and Q=C2
dρLabelID
C22×D4⋊D7224C2^2xD4:D7448,1245

Semidirect products G=N:Q with N=C2×D4⋊D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4⋊D7)⋊1C2 = D28.3D4φ: C2/C1C2 ⊆ Out C2×D4⋊D71128+(C2xD4:D7):1C2448,283
(C2×D4⋊D7)⋊2C2 = D4⋊D28φ: C2/C1C2 ⊆ Out C2×D4⋊D7112(C2xD4:D7):2C2448,307
(C2×D4⋊D7)⋊3C2 = D14⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):3C2448,309
(C2×D4⋊D7)⋊4C2 = D43D28φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):4C2448,315
(C2×D4⋊D7)⋊5C2 = C7⋊C8⋊D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):5C2448,316
(C2×D4⋊D7)⋊6C2 = D283D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):6C2448,320
(C2×D4⋊D7)⋊7C2 = C287D8φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):7C2448,549
(C2×D4⋊D7)⋊8C2 = D2816D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7112(C2xD4:D7):8C2448,570
(C2×D4⋊D7)⋊9C2 = D2817D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):9C2448,571
(C2×D4⋊D7)⋊10C2 = C7⋊C822D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):10C2448,572
(C2×D4⋊D7)⋊11C2 = C4⋊D4⋊D7φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):11C2448,573
(C2×D4⋊D7)⋊12C2 = C42.64D14φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):12C2448,592
(C2×D4⋊D7)⋊13C2 = C282D8φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):13C2448,606
(C2×D4⋊D7)⋊14C2 = C28⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):14C2448,607
(C2×D4⋊D7)⋊15C2 = C42.74D14φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):15C2448,608
(C2×D4⋊D7)⋊16C2 = Dic7⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):16C2448,684
(C2×D4⋊D7)⋊17C2 = C565D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):17C2448,685
(C2×D4⋊D7)⋊18C2 = C5611D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):18C2448,688
(C2×D4⋊D7)⋊19C2 = D28⋊D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7112(C2xD4:D7):19C2448,690
(C2×D4⋊D7)⋊20C2 = D287D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):20C2448,706
(C2×D4⋊D7)⋊21C2 = C569D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):21C2448,710
(C2×D4⋊D7)⋊22C2 = M4(2).D14φ: C2/C1C2 ⊆ Out C2×D4⋊D71128+(C2xD4:D7):22C2448,733
(C2×D4⋊D7)⋊23C2 = (C2×C14)⋊8D8φ: C2/C1C2 ⊆ Out C2×D4⋊D7112(C2xD4:D7):23C2448,751
(C2×D4⋊D7)⋊24C2 = (C7×D4)⋊14D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):24C2448,772
(C2×D4⋊D7)⋊25C2 = C2×D7×D8φ: C2/C1C2 ⊆ Out C2×D4⋊D7112(C2xD4:D7):25C2448,1207
(C2×D4⋊D7)⋊26C2 = C2×D8⋊D7φ: C2/C1C2 ⊆ Out C2×D4⋊D7112(C2xD4:D7):26C2448,1208
(C2×D4⋊D7)⋊27C2 = C2×D56⋊C2φ: C2/C1C2 ⊆ Out C2×D4⋊D7112(C2xD4:D7):27C2448,1212
(C2×D4⋊D7)⋊28C2 = C2×SD163D7φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7):28C2448,1214
(C2×D4⋊D7)⋊29C2 = D85D14φ: C2/C1C2 ⊆ Out C2×D4⋊D71128+(C2xD4:D7):29C2448,1227
(C2×D4⋊D7)⋊30C2 = C2×D4.D14φ: C2/C1C2 ⊆ Out C2×D4⋊D7112(C2xD4:D7):30C2448,1246
(C2×D4⋊D7)⋊31C2 = C2×D4⋊D14φ: C2/C1C2 ⊆ Out C2×D4⋊D7112(C2xD4:D7):31C2448,1273
(C2×D4⋊D7)⋊32C2 = D28.32C23φ: C2/C1C2 ⊆ Out C2×D4⋊D71128+(C2xD4:D7):32C2448,1288
(C2×D4⋊D7)⋊33C2 = C2×D4.8D14φ: trivial image224(C2xD4:D7):33C2448,1274

Non-split extensions G=N.Q with N=C2×D4⋊D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4⋊D7).1C2 = Dic74D8φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7).1C2448,290
(C2×D4⋊D7).2C2 = D4⋊D7⋊C4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7).2C2448,319
(C2×D4⋊D7).3C2 = D28.D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7).3C2448,321
(C2×D4⋊D7).4C2 = C42.48D14φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7).4C2448,548
(C2×D4⋊D7).5C2 = D4.1D28φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7).5C2448,550
(C2×D4⋊D7).6C2 = D28.23D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7).6C2448,591
(C2×D4⋊D7).7C2 = C42.214D14φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7).7C2448,593
(C2×D4⋊D7).8C2 = (C7×D4).D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7).8C2448,699
(C2×D4⋊D7).9C2 = C56.43D4φ: C2/C1C2 ⊆ Out C2×D4⋊D7224(C2xD4:D7).9C2448,702
(C2×D4⋊D7).10C2 = C4×D4⋊D7φ: trivial image224(C2xD4:D7).10C2448,547

׿
×
𝔽