Extensions 1→N→G→Q→1 with N=C2xD4:D7 and Q=C2

Direct product G=NxQ with N=C2xD4:D7 and Q=C2
dρLabelID
C22xD4:D7224C2^2xD4:D7448,1245

Semidirect products G=N:Q with N=C2xD4:D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4:D7):1C2 = D28.3D4φ: C2/C1C2 ⊆ Out C2xD4:D71128+(C2xD4:D7):1C2448,283
(C2xD4:D7):2C2 = D4:D28φ: C2/C1C2 ⊆ Out C2xD4:D7112(C2xD4:D7):2C2448,307
(C2xD4:D7):3C2 = D14:D8φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):3C2448,309
(C2xD4:D7):4C2 = D4:3D28φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):4C2448,315
(C2xD4:D7):5C2 = C7:C8:D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):5C2448,316
(C2xD4:D7):6C2 = D28:3D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):6C2448,320
(C2xD4:D7):7C2 = C28:7D8φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):7C2448,549
(C2xD4:D7):8C2 = D28:16D4φ: C2/C1C2 ⊆ Out C2xD4:D7112(C2xD4:D7):8C2448,570
(C2xD4:D7):9C2 = D28:17D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):9C2448,571
(C2xD4:D7):10C2 = C7:C8:22D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):10C2448,572
(C2xD4:D7):11C2 = C4:D4:D7φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):11C2448,573
(C2xD4:D7):12C2 = C42.64D14φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):12C2448,592
(C2xD4:D7):13C2 = C28:2D8φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):13C2448,606
(C2xD4:D7):14C2 = C28:D8φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):14C2448,607
(C2xD4:D7):15C2 = C42.74D14φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):15C2448,608
(C2xD4:D7):16C2 = Dic7:D8φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):16C2448,684
(C2xD4:D7):17C2 = C56:5D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):17C2448,685
(C2xD4:D7):18C2 = C56:11D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):18C2448,688
(C2xD4:D7):19C2 = D28:D4φ: C2/C1C2 ⊆ Out C2xD4:D7112(C2xD4:D7):19C2448,690
(C2xD4:D7):20C2 = D28:7D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):20C2448,706
(C2xD4:D7):21C2 = C56:9D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):21C2448,710
(C2xD4:D7):22C2 = M4(2).D14φ: C2/C1C2 ⊆ Out C2xD4:D71128+(C2xD4:D7):22C2448,733
(C2xD4:D7):23C2 = (C2xC14):8D8φ: C2/C1C2 ⊆ Out C2xD4:D7112(C2xD4:D7):23C2448,751
(C2xD4:D7):24C2 = (C7xD4):14D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):24C2448,772
(C2xD4:D7):25C2 = C2xD7xD8φ: C2/C1C2 ⊆ Out C2xD4:D7112(C2xD4:D7):25C2448,1207
(C2xD4:D7):26C2 = C2xD8:D7φ: C2/C1C2 ⊆ Out C2xD4:D7112(C2xD4:D7):26C2448,1208
(C2xD4:D7):27C2 = C2xD56:C2φ: C2/C1C2 ⊆ Out C2xD4:D7112(C2xD4:D7):27C2448,1212
(C2xD4:D7):28C2 = C2xSD16:3D7φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7):28C2448,1214
(C2xD4:D7):29C2 = D8:5D14φ: C2/C1C2 ⊆ Out C2xD4:D71128+(C2xD4:D7):29C2448,1227
(C2xD4:D7):30C2 = C2xD4.D14φ: C2/C1C2 ⊆ Out C2xD4:D7112(C2xD4:D7):30C2448,1246
(C2xD4:D7):31C2 = C2xD4:D14φ: C2/C1C2 ⊆ Out C2xD4:D7112(C2xD4:D7):31C2448,1273
(C2xD4:D7):32C2 = D28.32C23φ: C2/C1C2 ⊆ Out C2xD4:D71128+(C2xD4:D7):32C2448,1288
(C2xD4:D7):33C2 = C2xD4.8D14φ: trivial image224(C2xD4:D7):33C2448,1274

Non-split extensions G=N.Q with N=C2xD4:D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4:D7).1C2 = Dic7:4D8φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7).1C2448,290
(C2xD4:D7).2C2 = D4:D7:C4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7).2C2448,319
(C2xD4:D7).3C2 = D28.D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7).3C2448,321
(C2xD4:D7).4C2 = C42.48D14φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7).4C2448,548
(C2xD4:D7).5C2 = D4.1D28φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7).5C2448,550
(C2xD4:D7).6C2 = D28.23D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7).6C2448,591
(C2xD4:D7).7C2 = C42.214D14φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7).7C2448,593
(C2xD4:D7).8C2 = (C7xD4).D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7).8C2448,699
(C2xD4:D7).9C2 = C56.43D4φ: C2/C1C2 ⊆ Out C2xD4:D7224(C2xD4:D7).9C2448,702
(C2xD4:D7).10C2 = C4xD4:D7φ: trivial image224(C2xD4:D7).10C2448,547

׿
x
:
Z
F
o
wr
Q
<