Copied to
clipboard

G = D283D4order 448 = 26·7

3rd semidirect product of D28 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D283D4, Dic72D8, (C2×D56)⋊5C2, C71(C4⋊D8), C2.11(D7×D8), C4.88(D4×D7), D4⋊C48D7, C28⋊D42C2, Dic7⋊C87C2, C14.25(C2×D8), (C2×C8).12D14, C14.D88C2, D28⋊C43C2, C4⋊C4.140D14, (C2×D4).31D14, C4.3(C4○D28), C28.112(C2×D4), C28.11(C4○D4), (C2×C56).12C22, (C2×Dic7).24D4, C22.183(D4×D7), C14.19(C4⋊D4), C2.13(D56⋊C2), C14.58(C8⋊C22), (C2×C28).226C23, (C2×D28).54C22, (D4×C14).47C22, C2.22(D14⋊D4), (C4×Dic7).13C22, (C2×D4⋊D7)⋊6C2, (C7×D4⋊C4)⋊8C2, (C2×C7⋊C8).24C22, (C2×C14).239(C2×D4), (C7×C4⋊C4).27C22, (C2×C4).333(C22×D7), SmallGroup(448,320)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D283D4
C1C7C14C2×C14C2×C28C2×D28D28⋊C4 — D283D4
C7C14C2×C28 — D283D4
C1C22C2×C4D4⋊C4

Generators and relations for D283D4
 G = < a,b,c,d | a28=b2=c4=d2=1, bab=dad=a-1, cac-1=a13, cbc-1=a12b, dbd=a19b, dcd=c-1 >

Subgroups: 980 in 140 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, C23, D7, C14, C14, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, Dic7, Dic7, C28, C28, D14, C2×C14, C2×C14, D4⋊C4, D4⋊C4, C4⋊C8, C4×D4, C41D4, C2×D8, C7⋊C8, C56, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×C14, C4⋊D8, D56, C2×C7⋊C8, C4×Dic7, D14⋊C4, D4⋊D7, C7×C4⋊C4, C2×C56, C2×C4×D7, C2×D28, C2×C7⋊D4, D4×C14, C14.D8, Dic7⋊C8, C7×D4⋊C4, D28⋊C4, C2×D56, C2×D4⋊D7, C28⋊D4, D283D4
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, C4○D4, D14, C4⋊D4, C2×D8, C8⋊C22, C22×D7, C4⋊D8, C4○D28, D4×D7, D14⋊D4, D7×D8, D56⋊C2, D283D4

Smallest permutation representation of D283D4
On 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 93)(2 92)(3 91)(4 90)(5 89)(6 88)(7 87)(8 86)(9 85)(10 112)(11 111)(12 110)(13 109)(14 108)(15 107)(16 106)(17 105)(18 104)(19 103)(20 102)(21 101)(22 100)(23 99)(24 98)(25 97)(26 96)(27 95)(28 94)(29 157)(30 156)(31 155)(32 154)(33 153)(34 152)(35 151)(36 150)(37 149)(38 148)(39 147)(40 146)(41 145)(42 144)(43 143)(44 142)(45 141)(46 168)(47 167)(48 166)(49 165)(50 164)(51 163)(52 162)(53 161)(54 160)(55 159)(56 158)(57 197)(58 224)(59 223)(60 222)(61 221)(62 220)(63 219)(64 218)(65 217)(66 216)(67 215)(68 214)(69 213)(70 212)(71 211)(72 210)(73 209)(74 208)(75 207)(76 206)(77 205)(78 204)(79 203)(80 202)(81 201)(82 200)(83 199)(84 198)(113 171)(114 170)(115 169)(116 196)(117 195)(118 194)(119 193)(120 192)(121 191)(122 190)(123 189)(124 188)(125 187)(126 186)(127 185)(128 184)(129 183)(130 182)(131 181)(132 180)(133 179)(134 178)(135 177)(136 176)(137 175)(138 174)(139 173)(140 172)
(1 177 87 129)(2 190 88 114)(3 175 89 127)(4 188 90 140)(5 173 91 125)(6 186 92 138)(7 171 93 123)(8 184 94 136)(9 169 95 121)(10 182 96 134)(11 195 97 119)(12 180 98 132)(13 193 99 117)(14 178 100 130)(15 191 101 115)(16 176 102 128)(17 189 103 113)(18 174 104 126)(19 187 105 139)(20 172 106 124)(21 185 107 137)(22 170 108 122)(23 183 109 135)(24 196 110 120)(25 181 111 133)(26 194 112 118)(27 179 85 131)(28 192 86 116)(29 71 160 210)(30 84 161 223)(31 69 162 208)(32 82 163 221)(33 67 164 206)(34 80 165 219)(35 65 166 204)(36 78 167 217)(37 63 168 202)(38 76 141 215)(39 61 142 200)(40 74 143 213)(41 59 144 198)(42 72 145 211)(43 57 146 224)(44 70 147 209)(45 83 148 222)(46 68 149 207)(47 81 150 220)(48 66 151 205)(49 79 152 218)(50 64 153 203)(51 77 154 216)(52 62 155 201)(53 75 156 214)(54 60 157 199)(55 73 158 212)(56 58 159 197)
(1 204)(2 203)(3 202)(4 201)(5 200)(6 199)(7 198)(8 197)(9 224)(10 223)(11 222)(12 221)(13 220)(14 219)(15 218)(16 217)(17 216)(18 215)(19 214)(20 213)(21 212)(22 211)(23 210)(24 209)(25 208)(26 207)(27 206)(28 205)(29 135)(30 134)(31 133)(32 132)(33 131)(34 130)(35 129)(36 128)(37 127)(38 126)(39 125)(40 124)(41 123)(42 122)(43 121)(44 120)(45 119)(46 118)(47 117)(48 116)(49 115)(50 114)(51 113)(52 140)(53 139)(54 138)(55 137)(56 136)(57 95)(58 94)(59 93)(60 92)(61 91)(62 90)(63 89)(64 88)(65 87)(66 86)(67 85)(68 112)(69 111)(70 110)(71 109)(72 108)(73 107)(74 106)(75 105)(76 104)(77 103)(78 102)(79 101)(80 100)(81 99)(82 98)(83 97)(84 96)(141 174)(142 173)(143 172)(144 171)(145 170)(146 169)(147 196)(148 195)(149 194)(150 193)(151 192)(152 191)(153 190)(154 189)(155 188)(156 187)(157 186)(158 185)(159 184)(160 183)(161 182)(162 181)(163 180)(164 179)(165 178)(166 177)(167 176)(168 175)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,93)(2,92)(3,91)(4,90)(5,89)(6,88)(7,87)(8,86)(9,85)(10,112)(11,111)(12,110)(13,109)(14,108)(15,107)(16,106)(17,105)(18,104)(19,103)(20,102)(21,101)(22,100)(23,99)(24,98)(25,97)(26,96)(27,95)(28,94)(29,157)(30,156)(31,155)(32,154)(33,153)(34,152)(35,151)(36,150)(37,149)(38,148)(39,147)(40,146)(41,145)(42,144)(43,143)(44,142)(45,141)(46,168)(47,167)(48,166)(49,165)(50,164)(51,163)(52,162)(53,161)(54,160)(55,159)(56,158)(57,197)(58,224)(59,223)(60,222)(61,221)(62,220)(63,219)(64,218)(65,217)(66,216)(67,215)(68,214)(69,213)(70,212)(71,211)(72,210)(73,209)(74,208)(75,207)(76,206)(77,205)(78,204)(79,203)(80,202)(81,201)(82,200)(83,199)(84,198)(113,171)(114,170)(115,169)(116,196)(117,195)(118,194)(119,193)(120,192)(121,191)(122,190)(123,189)(124,188)(125,187)(126,186)(127,185)(128,184)(129,183)(130,182)(131,181)(132,180)(133,179)(134,178)(135,177)(136,176)(137,175)(138,174)(139,173)(140,172), (1,177,87,129)(2,190,88,114)(3,175,89,127)(4,188,90,140)(5,173,91,125)(6,186,92,138)(7,171,93,123)(8,184,94,136)(9,169,95,121)(10,182,96,134)(11,195,97,119)(12,180,98,132)(13,193,99,117)(14,178,100,130)(15,191,101,115)(16,176,102,128)(17,189,103,113)(18,174,104,126)(19,187,105,139)(20,172,106,124)(21,185,107,137)(22,170,108,122)(23,183,109,135)(24,196,110,120)(25,181,111,133)(26,194,112,118)(27,179,85,131)(28,192,86,116)(29,71,160,210)(30,84,161,223)(31,69,162,208)(32,82,163,221)(33,67,164,206)(34,80,165,219)(35,65,166,204)(36,78,167,217)(37,63,168,202)(38,76,141,215)(39,61,142,200)(40,74,143,213)(41,59,144,198)(42,72,145,211)(43,57,146,224)(44,70,147,209)(45,83,148,222)(46,68,149,207)(47,81,150,220)(48,66,151,205)(49,79,152,218)(50,64,153,203)(51,77,154,216)(52,62,155,201)(53,75,156,214)(54,60,157,199)(55,73,158,212)(56,58,159,197), (1,204)(2,203)(3,202)(4,201)(5,200)(6,199)(7,198)(8,197)(9,224)(10,223)(11,222)(12,221)(13,220)(14,219)(15,218)(16,217)(17,216)(18,215)(19,214)(20,213)(21,212)(22,211)(23,210)(24,209)(25,208)(26,207)(27,206)(28,205)(29,135)(30,134)(31,133)(32,132)(33,131)(34,130)(35,129)(36,128)(37,127)(38,126)(39,125)(40,124)(41,123)(42,122)(43,121)(44,120)(45,119)(46,118)(47,117)(48,116)(49,115)(50,114)(51,113)(52,140)(53,139)(54,138)(55,137)(56,136)(57,95)(58,94)(59,93)(60,92)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,112)(69,111)(70,110)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,102)(79,101)(80,100)(81,99)(82,98)(83,97)(84,96)(141,174)(142,173)(143,172)(144,171)(145,170)(146,169)(147,196)(148,195)(149,194)(150,193)(151,192)(152,191)(153,190)(154,189)(155,188)(156,187)(157,186)(158,185)(159,184)(160,183)(161,182)(162,181)(163,180)(164,179)(165,178)(166,177)(167,176)(168,175)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,93)(2,92)(3,91)(4,90)(5,89)(6,88)(7,87)(8,86)(9,85)(10,112)(11,111)(12,110)(13,109)(14,108)(15,107)(16,106)(17,105)(18,104)(19,103)(20,102)(21,101)(22,100)(23,99)(24,98)(25,97)(26,96)(27,95)(28,94)(29,157)(30,156)(31,155)(32,154)(33,153)(34,152)(35,151)(36,150)(37,149)(38,148)(39,147)(40,146)(41,145)(42,144)(43,143)(44,142)(45,141)(46,168)(47,167)(48,166)(49,165)(50,164)(51,163)(52,162)(53,161)(54,160)(55,159)(56,158)(57,197)(58,224)(59,223)(60,222)(61,221)(62,220)(63,219)(64,218)(65,217)(66,216)(67,215)(68,214)(69,213)(70,212)(71,211)(72,210)(73,209)(74,208)(75,207)(76,206)(77,205)(78,204)(79,203)(80,202)(81,201)(82,200)(83,199)(84,198)(113,171)(114,170)(115,169)(116,196)(117,195)(118,194)(119,193)(120,192)(121,191)(122,190)(123,189)(124,188)(125,187)(126,186)(127,185)(128,184)(129,183)(130,182)(131,181)(132,180)(133,179)(134,178)(135,177)(136,176)(137,175)(138,174)(139,173)(140,172), (1,177,87,129)(2,190,88,114)(3,175,89,127)(4,188,90,140)(5,173,91,125)(6,186,92,138)(7,171,93,123)(8,184,94,136)(9,169,95,121)(10,182,96,134)(11,195,97,119)(12,180,98,132)(13,193,99,117)(14,178,100,130)(15,191,101,115)(16,176,102,128)(17,189,103,113)(18,174,104,126)(19,187,105,139)(20,172,106,124)(21,185,107,137)(22,170,108,122)(23,183,109,135)(24,196,110,120)(25,181,111,133)(26,194,112,118)(27,179,85,131)(28,192,86,116)(29,71,160,210)(30,84,161,223)(31,69,162,208)(32,82,163,221)(33,67,164,206)(34,80,165,219)(35,65,166,204)(36,78,167,217)(37,63,168,202)(38,76,141,215)(39,61,142,200)(40,74,143,213)(41,59,144,198)(42,72,145,211)(43,57,146,224)(44,70,147,209)(45,83,148,222)(46,68,149,207)(47,81,150,220)(48,66,151,205)(49,79,152,218)(50,64,153,203)(51,77,154,216)(52,62,155,201)(53,75,156,214)(54,60,157,199)(55,73,158,212)(56,58,159,197), (1,204)(2,203)(3,202)(4,201)(5,200)(6,199)(7,198)(8,197)(9,224)(10,223)(11,222)(12,221)(13,220)(14,219)(15,218)(16,217)(17,216)(18,215)(19,214)(20,213)(21,212)(22,211)(23,210)(24,209)(25,208)(26,207)(27,206)(28,205)(29,135)(30,134)(31,133)(32,132)(33,131)(34,130)(35,129)(36,128)(37,127)(38,126)(39,125)(40,124)(41,123)(42,122)(43,121)(44,120)(45,119)(46,118)(47,117)(48,116)(49,115)(50,114)(51,113)(52,140)(53,139)(54,138)(55,137)(56,136)(57,95)(58,94)(59,93)(60,92)(61,91)(62,90)(63,89)(64,88)(65,87)(66,86)(67,85)(68,112)(69,111)(70,110)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,102)(79,101)(80,100)(81,99)(82,98)(83,97)(84,96)(141,174)(142,173)(143,172)(144,171)(145,170)(146,169)(147,196)(148,195)(149,194)(150,193)(151,192)(152,191)(153,190)(154,189)(155,188)(156,187)(157,186)(158,185)(159,184)(160,183)(161,182)(162,181)(163,180)(164,179)(165,178)(166,177)(167,176)(168,175) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,93),(2,92),(3,91),(4,90),(5,89),(6,88),(7,87),(8,86),(9,85),(10,112),(11,111),(12,110),(13,109),(14,108),(15,107),(16,106),(17,105),(18,104),(19,103),(20,102),(21,101),(22,100),(23,99),(24,98),(25,97),(26,96),(27,95),(28,94),(29,157),(30,156),(31,155),(32,154),(33,153),(34,152),(35,151),(36,150),(37,149),(38,148),(39,147),(40,146),(41,145),(42,144),(43,143),(44,142),(45,141),(46,168),(47,167),(48,166),(49,165),(50,164),(51,163),(52,162),(53,161),(54,160),(55,159),(56,158),(57,197),(58,224),(59,223),(60,222),(61,221),(62,220),(63,219),(64,218),(65,217),(66,216),(67,215),(68,214),(69,213),(70,212),(71,211),(72,210),(73,209),(74,208),(75,207),(76,206),(77,205),(78,204),(79,203),(80,202),(81,201),(82,200),(83,199),(84,198),(113,171),(114,170),(115,169),(116,196),(117,195),(118,194),(119,193),(120,192),(121,191),(122,190),(123,189),(124,188),(125,187),(126,186),(127,185),(128,184),(129,183),(130,182),(131,181),(132,180),(133,179),(134,178),(135,177),(136,176),(137,175),(138,174),(139,173),(140,172)], [(1,177,87,129),(2,190,88,114),(3,175,89,127),(4,188,90,140),(5,173,91,125),(6,186,92,138),(7,171,93,123),(8,184,94,136),(9,169,95,121),(10,182,96,134),(11,195,97,119),(12,180,98,132),(13,193,99,117),(14,178,100,130),(15,191,101,115),(16,176,102,128),(17,189,103,113),(18,174,104,126),(19,187,105,139),(20,172,106,124),(21,185,107,137),(22,170,108,122),(23,183,109,135),(24,196,110,120),(25,181,111,133),(26,194,112,118),(27,179,85,131),(28,192,86,116),(29,71,160,210),(30,84,161,223),(31,69,162,208),(32,82,163,221),(33,67,164,206),(34,80,165,219),(35,65,166,204),(36,78,167,217),(37,63,168,202),(38,76,141,215),(39,61,142,200),(40,74,143,213),(41,59,144,198),(42,72,145,211),(43,57,146,224),(44,70,147,209),(45,83,148,222),(46,68,149,207),(47,81,150,220),(48,66,151,205),(49,79,152,218),(50,64,153,203),(51,77,154,216),(52,62,155,201),(53,75,156,214),(54,60,157,199),(55,73,158,212),(56,58,159,197)], [(1,204),(2,203),(3,202),(4,201),(5,200),(6,199),(7,198),(8,197),(9,224),(10,223),(11,222),(12,221),(13,220),(14,219),(15,218),(16,217),(17,216),(18,215),(19,214),(20,213),(21,212),(22,211),(23,210),(24,209),(25,208),(26,207),(27,206),(28,205),(29,135),(30,134),(31,133),(32,132),(33,131),(34,130),(35,129),(36,128),(37,127),(38,126),(39,125),(40,124),(41,123),(42,122),(43,121),(44,120),(45,119),(46,118),(47,117),(48,116),(49,115),(50,114),(51,113),(52,140),(53,139),(54,138),(55,137),(56,136),(57,95),(58,94),(59,93),(60,92),(61,91),(62,90),(63,89),(64,88),(65,87),(66,86),(67,85),(68,112),(69,111),(70,110),(71,109),(72,108),(73,107),(74,106),(75,105),(76,104),(77,103),(78,102),(79,101),(80,100),(81,99),(82,98),(83,97),(84,96),(141,174),(142,173),(143,172),(144,171),(145,170),(146,169),(147,196),(148,195),(149,194),(150,193),(151,192),(152,191),(153,190),(154,189),(155,188),(156,187),(157,186),(158,185),(159,184),(160,183),(161,182),(162,181),(163,180),(164,179),(165,178),(166,177),(167,176),(168,175)]])

61 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G7A7B7C8A8B8C8D14A···14I14J···14O28A···28F28G···28L56A···56L
order122222224444444777888814···1414···1428···2828···2856···56
size1111828285622441414282224428282···28···84···48···84···4

61 irreducible representations

dim1111111122222222244444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D7D8C4○D4D14D14D14C4○D28C8⋊C22D4×D7D4×D7D7×D8D56⋊C2
kernelD283D4C14.D8Dic7⋊C8C7×D4⋊C4D28⋊C4C2×D56C2×D4⋊D7C28⋊D4D28C2×Dic7D4⋊C4Dic7C28C4⋊C4C2×C8C2×D4C4C14C4C22C2C2
# reps11111111223423331213366

Matrix representation of D283D4 in GL4(𝔽113) generated by

154800
898900
0001
001120
,
986600
241500
001120
0001
,
611200
3710700
001120
000112
,
271200
908600
003182
008282
G:=sub<GL(4,GF(113))| [15,89,0,0,48,89,0,0,0,0,0,112,0,0,1,0],[98,24,0,0,66,15,0,0,0,0,112,0,0,0,0,1],[6,37,0,0,112,107,0,0,0,0,112,0,0,0,0,112],[27,90,0,0,12,86,0,0,0,0,31,82,0,0,82,82] >;

D283D4 in GAP, Magma, Sage, TeX

D_{28}\rtimes_3D_4
% in TeX

G:=Group("D28:3D4");
// GroupNames label

G:=SmallGroup(448,320);
// by ID

G=gap.SmallGroup(448,320);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,64,590,219,1684,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^12*b,d*b*d=a^19*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽