Copied to
clipboard

G = D7×D16order 448 = 26·7

Direct product of D7 and D16

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7×D16, D81D14, C164D14, D1124C2, C1122C22, D14.12D8, D565C22, Dic7.3D8, C56.13C23, C72(C2×D16), (D7×D8)⋊3C2, C7⋊C8.11D4, C4.1(D4×D7), (C7×D16)⋊2C2, (D7×C16)⋊1C2, C7⋊D161C2, C7⋊C165C22, C28.7(C2×D4), C2.16(D7×D8), (C4×D7).18D4, C14.32(C2×D8), (C7×D8)⋊5C22, (C8×D7).9C22, C8.19(C22×D7), SmallGroup(448,444)

Series: Derived Chief Lower central Upper central

C1C56 — D7×D16
C1C7C14C28C56C8×D7D7×D8 — D7×D16
C7C14C28C56 — D7×D16
C1C2C4C8D16

Generators and relations for D7×D16
 G = < a,b,c,d | a7=b2=c16=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 880 in 98 conjugacy classes, 33 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C7, C8, C8, C2×C4, D4, C23, D7, D7, C14, C14, C16, C16, C2×C8, D8, D8, C2×D4, Dic7, C28, D14, D14, C2×C14, C2×C16, D16, D16, C2×D8, C7⋊C8, C56, C4×D7, D28, C7⋊D4, C7×D4, C22×D7, C2×D16, C7⋊C16, C112, C8×D7, D56, D4⋊D7, C7×D8, D4×D7, D7×C16, D112, C7⋊D16, C7×D16, D7×D8, D7×D16
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, D16, C2×D8, C22×D7, C2×D16, D4×D7, D7×D8, D7×D16

Smallest permutation representation of D7×D16
On 112 points
Generators in S112
(1 98 61 70 24 89 34)(2 99 62 71 25 90 35)(3 100 63 72 26 91 36)(4 101 64 73 27 92 37)(5 102 49 74 28 93 38)(6 103 50 75 29 94 39)(7 104 51 76 30 95 40)(8 105 52 77 31 96 41)(9 106 53 78 32 81 42)(10 107 54 79 17 82 43)(11 108 55 80 18 83 44)(12 109 56 65 19 84 45)(13 110 57 66 20 85 46)(14 111 58 67 21 86 47)(15 112 59 68 22 87 48)(16 97 60 69 23 88 33)
(1 34)(2 35)(3 36)(4 37)(5 38)(6 39)(7 40)(8 41)(9 42)(10 43)(11 44)(12 45)(13 46)(14 47)(15 48)(16 33)(17 54)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 49)(29 50)(30 51)(31 52)(32 53)(81 106)(82 107)(83 108)(84 109)(85 110)(86 111)(87 112)(88 97)(89 98)(90 99)(91 100)(92 101)(93 102)(94 103)(95 104)(96 105)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 8)(2 7)(3 6)(4 5)(9 16)(10 15)(11 14)(12 13)(17 22)(18 21)(19 20)(23 32)(24 31)(25 30)(26 29)(27 28)(33 42)(34 41)(35 40)(36 39)(37 38)(43 48)(44 47)(45 46)(49 64)(50 63)(51 62)(52 61)(53 60)(54 59)(55 58)(56 57)(65 66)(67 80)(68 79)(69 78)(70 77)(71 76)(72 75)(73 74)(81 88)(82 87)(83 86)(84 85)(89 96)(90 95)(91 94)(92 93)(97 106)(98 105)(99 104)(100 103)(101 102)(107 112)(108 111)(109 110)

G:=sub<Sym(112)| (1,98,61,70,24,89,34)(2,99,62,71,25,90,35)(3,100,63,72,26,91,36)(4,101,64,73,27,92,37)(5,102,49,74,28,93,38)(6,103,50,75,29,94,39)(7,104,51,76,30,95,40)(8,105,52,77,31,96,41)(9,106,53,78,32,81,42)(10,107,54,79,17,82,43)(11,108,55,80,18,83,44)(12,109,56,65,19,84,45)(13,110,57,66,20,85,46)(14,111,58,67,21,86,47)(15,112,59,68,22,87,48)(16,97,60,69,23,88,33), (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,33)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,49)(29,50)(30,51)(31,52)(32,53)(81,106)(82,107)(83,108)(84,109)(85,110)(86,111)(87,112)(88,97)(89,98)(90,99)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13)(17,22)(18,21)(19,20)(23,32)(24,31)(25,30)(26,29)(27,28)(33,42)(34,41)(35,40)(36,39)(37,38)(43,48)(44,47)(45,46)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)(55,58)(56,57)(65,66)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75)(73,74)(81,88)(82,87)(83,86)(84,85)(89,96)(90,95)(91,94)(92,93)(97,106)(98,105)(99,104)(100,103)(101,102)(107,112)(108,111)(109,110)>;

G:=Group( (1,98,61,70,24,89,34)(2,99,62,71,25,90,35)(3,100,63,72,26,91,36)(4,101,64,73,27,92,37)(5,102,49,74,28,93,38)(6,103,50,75,29,94,39)(7,104,51,76,30,95,40)(8,105,52,77,31,96,41)(9,106,53,78,32,81,42)(10,107,54,79,17,82,43)(11,108,55,80,18,83,44)(12,109,56,65,19,84,45)(13,110,57,66,20,85,46)(14,111,58,67,21,86,47)(15,112,59,68,22,87,48)(16,97,60,69,23,88,33), (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,43)(11,44)(12,45)(13,46)(14,47)(15,48)(16,33)(17,54)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,49)(29,50)(30,51)(31,52)(32,53)(81,106)(82,107)(83,108)(84,109)(85,110)(86,111)(87,112)(88,97)(89,98)(90,99)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13)(17,22)(18,21)(19,20)(23,32)(24,31)(25,30)(26,29)(27,28)(33,42)(34,41)(35,40)(36,39)(37,38)(43,48)(44,47)(45,46)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)(55,58)(56,57)(65,66)(67,80)(68,79)(69,78)(70,77)(71,76)(72,75)(73,74)(81,88)(82,87)(83,86)(84,85)(89,96)(90,95)(91,94)(92,93)(97,106)(98,105)(99,104)(100,103)(101,102)(107,112)(108,111)(109,110) );

G=PermutationGroup([[(1,98,61,70,24,89,34),(2,99,62,71,25,90,35),(3,100,63,72,26,91,36),(4,101,64,73,27,92,37),(5,102,49,74,28,93,38),(6,103,50,75,29,94,39),(7,104,51,76,30,95,40),(8,105,52,77,31,96,41),(9,106,53,78,32,81,42),(10,107,54,79,17,82,43),(11,108,55,80,18,83,44),(12,109,56,65,19,84,45),(13,110,57,66,20,85,46),(14,111,58,67,21,86,47),(15,112,59,68,22,87,48),(16,97,60,69,23,88,33)], [(1,34),(2,35),(3,36),(4,37),(5,38),(6,39),(7,40),(8,41),(9,42),(10,43),(11,44),(12,45),(13,46),(14,47),(15,48),(16,33),(17,54),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,49),(29,50),(30,51),(31,52),(32,53),(81,106),(82,107),(83,108),(84,109),(85,110),(86,111),(87,112),(88,97),(89,98),(90,99),(91,100),(92,101),(93,102),(94,103),(95,104),(96,105)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,8),(2,7),(3,6),(4,5),(9,16),(10,15),(11,14),(12,13),(17,22),(18,21),(19,20),(23,32),(24,31),(25,30),(26,29),(27,28),(33,42),(34,41),(35,40),(36,39),(37,38),(43,48),(44,47),(45,46),(49,64),(50,63),(51,62),(52,61),(53,60),(54,59),(55,58),(56,57),(65,66),(67,80),(68,79),(69,78),(70,77),(71,76),(72,75),(73,74),(81,88),(82,87),(83,86),(84,85),(89,96),(90,95),(91,94),(92,93),(97,106),(98,105),(99,104),(100,103),(101,102),(107,112),(108,111),(109,110)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B7A7B7C8A8B8C8D14A14B14C14D···14I16A16B16C16D16E16F16G16H28A28B28C56A···56F112A···112L
order1222222244777888814141414···14161616161616161628282856···56112···112
size117788565621422222141422216···162222141414144444···44···4

55 irreducible representations

dim11111122222222444
type+++++++++++++++++
imageC1C2C2C2C2C2D4D4D7D8D8D14D14D16D4×D7D7×D8D7×D16
kernelD7×D16D7×C16D112C7⋊D16C7×D16D7×D8C7⋊C8C4×D7D16Dic7D14C16D8D7C4C2C1
# reps111212113223683612

Matrix representation of D7×D16 in GL4(𝔽113) generated by

0100
1127900
0010
0001
,
0100
1000
0010
0001
,
112000
011200
001457
006091
,
112000
011200
009956
005114
G:=sub<GL(4,GF(113))| [0,112,0,0,1,79,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[112,0,0,0,0,112,0,0,0,0,14,60,0,0,57,91],[112,0,0,0,0,112,0,0,0,0,99,51,0,0,56,14] >;

D7×D16 in GAP, Magma, Sage, TeX

D_7\times D_{16}
% in TeX

G:=Group("D7xD16");
// GroupNames label

G:=SmallGroup(448,444);
// by ID

G=gap.SmallGroup(448,444);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,135,346,185,192,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^16=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽