metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C7⋊2D16, D8⋊1D7, D56⋊3C2, C28.3D4, C14.8D8, C8.4D14, C56.2C22, C7⋊C16⋊1C2, (C7×D8)⋊1C2, C2.4(D4⋊D7), C4.1(C7⋊D4), SmallGroup(224,32)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7⋊D16
G = < a,b,c | a7=b16=c2=1, bab-1=cac=a-1, cbc=b-1 >
(1 79 93 98 51 25 33)(2 34 26 52 99 94 80)(3 65 95 100 53 27 35)(4 36 28 54 101 96 66)(5 67 81 102 55 29 37)(6 38 30 56 103 82 68)(7 69 83 104 57 31 39)(8 40 32 58 105 84 70)(9 71 85 106 59 17 41)(10 42 18 60 107 86 72)(11 73 87 108 61 19 43)(12 44 20 62 109 88 74)(13 75 89 110 63 21 45)(14 46 22 64 111 90 76)(15 77 91 112 49 23 47)(16 48 24 50 97 92 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(17 85)(18 84)(19 83)(20 82)(21 81)(22 96)(23 95)(24 94)(25 93)(26 92)(27 91)(28 90)(29 89)(30 88)(31 87)(32 86)(33 79)(34 78)(35 77)(36 76)(37 75)(38 74)(39 73)(40 72)(41 71)(42 70)(43 69)(44 68)(45 67)(46 66)(47 65)(48 80)(49 100)(50 99)(51 98)(52 97)(53 112)(54 111)(55 110)(56 109)(57 108)(58 107)(59 106)(60 105)(61 104)(62 103)(63 102)(64 101)
G:=sub<Sym(112)| (1,79,93,98,51,25,33)(2,34,26,52,99,94,80)(3,65,95,100,53,27,35)(4,36,28,54,101,96,66)(5,67,81,102,55,29,37)(6,38,30,56,103,82,68)(7,69,83,104,57,31,39)(8,40,32,58,105,84,70)(9,71,85,106,59,17,41)(10,42,18,60,107,86,72)(11,73,87,108,61,19,43)(12,44,20,62,109,88,74)(13,75,89,110,63,21,45)(14,46,22,64,111,90,76)(15,77,91,112,49,23,47)(16,48,24,50,97,92,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,85)(18,84)(19,83)(20,82)(21,81)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,90)(29,89)(30,88)(31,87)(32,86)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,80)(49,100)(50,99)(51,98)(52,97)(53,112)(54,111)(55,110)(56,109)(57,108)(58,107)(59,106)(60,105)(61,104)(62,103)(63,102)(64,101)>;
G:=Group( (1,79,93,98,51,25,33)(2,34,26,52,99,94,80)(3,65,95,100,53,27,35)(4,36,28,54,101,96,66)(5,67,81,102,55,29,37)(6,38,30,56,103,82,68)(7,69,83,104,57,31,39)(8,40,32,58,105,84,70)(9,71,85,106,59,17,41)(10,42,18,60,107,86,72)(11,73,87,108,61,19,43)(12,44,20,62,109,88,74)(13,75,89,110,63,21,45)(14,46,22,64,111,90,76)(15,77,91,112,49,23,47)(16,48,24,50,97,92,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(17,85)(18,84)(19,83)(20,82)(21,81)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,90)(29,89)(30,88)(31,87)(32,86)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,80)(49,100)(50,99)(51,98)(52,97)(53,112)(54,111)(55,110)(56,109)(57,108)(58,107)(59,106)(60,105)(61,104)(62,103)(63,102)(64,101) );
G=PermutationGroup([[(1,79,93,98,51,25,33),(2,34,26,52,99,94,80),(3,65,95,100,53,27,35),(4,36,28,54,101,96,66),(5,67,81,102,55,29,37),(6,38,30,56,103,82,68),(7,69,83,104,57,31,39),(8,40,32,58,105,84,70),(9,71,85,106,59,17,41),(10,42,18,60,107,86,72),(11,73,87,108,61,19,43),(12,44,20,62,109,88,74),(13,75,89,110,63,21,45),(14,46,22,64,111,90,76),(15,77,91,112,49,23,47),(16,48,24,50,97,92,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(17,85),(18,84),(19,83),(20,82),(21,81),(22,96),(23,95),(24,94),(25,93),(26,92),(27,91),(28,90),(29,89),(30,88),(31,87),(32,86),(33,79),(34,78),(35,77),(36,76),(37,75),(38,74),(39,73),(40,72),(41,71),(42,70),(43,69),(44,68),(45,67),(46,66),(47,65),(48,80),(49,100),(50,99),(51,98),(52,97),(53,112),(54,111),(55,110),(56,109),(57,108),(58,107),(59,106),(60,105),(61,104),(62,103),(63,102),(64,101)]])
C7⋊D16 is a maximal subgroup of
D7×D16 D8⋊D14 D112⋊C2 SD32⋊3D7 D8.D14 Q16⋊D14 C56.30C23
C7⋊D16 is a maximal quotient of C8.4Dic14 C14.D16 C7⋊D32 D16.D7 C7⋊SD64 C7⋊Q64 C14.SD32
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 7A | 7B | 7C | 8A | 8B | 14A | 14B | 14C | 14D | ··· | 14I | 16A | 16B | 16C | 16D | 28A | 28B | 28C | 56A | ··· | 56F |
order | 1 | 2 | 2 | 2 | 4 | 7 | 7 | 7 | 8 | 8 | 14 | 14 | 14 | 14 | ··· | 14 | 16 | 16 | 16 | 16 | 28 | 28 | 28 | 56 | ··· | 56 |
size | 1 | 1 | 8 | 56 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | ··· | 8 | 14 | 14 | 14 | 14 | 4 | 4 | 4 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | D4 | D7 | D8 | D14 | D16 | C7⋊D4 | D4⋊D7 | C7⋊D16 |
kernel | C7⋊D16 | C7⋊C16 | D56 | C7×D8 | C28 | D8 | C14 | C8 | C7 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 3 | 4 | 6 | 3 | 6 |
Matrix representation of C7⋊D16 ►in GL4(𝔽113) generated by
0 | 1 | 0 | 0 |
112 | 9 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
112 | 0 | 0 | 0 |
104 | 1 | 0 | 0 |
0 | 0 | 22 | 8 |
0 | 0 | 109 | 14 |
1 | 0 | 0 | 0 |
9 | 112 | 0 | 0 |
0 | 0 | 112 | 111 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(113))| [0,112,0,0,1,9,0,0,0,0,1,0,0,0,0,1],[112,104,0,0,0,1,0,0,0,0,22,109,0,0,8,14],[1,9,0,0,0,112,0,0,0,0,112,0,0,0,111,1] >;
C7⋊D16 in GAP, Magma, Sage, TeX
C_7\rtimes D_{16}
% in TeX
G:=Group("C7:D16");
// GroupNames label
G:=SmallGroup(224,32);
// by ID
G=gap.SmallGroup(224,32);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-7,73,218,116,122,579,297,69,6917]);
// Polycyclic
G:=Group<a,b,c|a^7=b^16=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export