Extensions 1→N→G→Q→1 with N=D8 and Q=D14

Direct product G=N×Q with N=D8 and Q=D14
dρLabelID
C2×D7×D8112C2xD7xD8448,1207

Semidirect products G=N:Q with N=D8 and Q=D14
extensionφ:Q→Out NdρLabelID
D81D14 = D7×D16φ: D14/D7C2 ⊆ Out D81124+D8:1D14448,444
D82D14 = D8⋊D14φ: D14/D7C2 ⊆ Out D81124D8:2D14448,445
D83D14 = D7×C8⋊C22φ: D14/D7C2 ⊆ Out D8568+D8:3D14448,1225
D84D14 = SD16⋊D14φ: D14/D7C2 ⊆ Out D81128-D8:4D14448,1226
D85D14 = D85D14φ: D14/D7C2 ⊆ Out D81128+D8:5D14448,1227
D86D14 = D86D14φ: D14/D7C2 ⊆ Out D81128-D8:6D14448,1228
D87D14 = C2×C7⋊D16φ: D14/C14C2 ⊆ Out D8224D8:7D14448,680
D88D14 = Q16⋊D14φ: D14/C14C2 ⊆ Out D81124+D8:8D14448,727
D89D14 = C2×D8⋊D7φ: D14/C14C2 ⊆ Out D8112D8:9D14448,1208
D810D14 = D810D14φ: D14/C14C2 ⊆ Out D81124D8:10D14448,1221
D811D14 = D811D14φ: D14/C14C2 ⊆ Out D81124D8:11D14448,1223
D812D14 = C2×D83D7φ: trivial image224D8:12D14448,1209
D813D14 = D813D14φ: trivial image1124D8:13D14448,1210
D814D14 = D7×C4○D8φ: trivial image1124D8:14D14448,1220
D815D14 = D815D14φ: trivial image1124+D8:15D14448,1222

Non-split extensions G=N.Q with N=D8 and Q=D14
extensionφ:Q→Out NdρLabelID
D8.1D14 = D163D7φ: D14/D7C2 ⊆ Out D82244-D8.1D14448,446
D8.2D14 = D7×SD32φ: D14/D7C2 ⊆ Out D81124D8.2D14448,447
D8.3D14 = D112⋊C2φ: D14/D7C2 ⊆ Out D81124+D8.3D14448,448
D8.4D14 = SD32⋊D7φ: D14/D7C2 ⊆ Out D82244-D8.4D14448,449
D8.5D14 = SD323D7φ: D14/D7C2 ⊆ Out D82244D8.5D14448,450
D8.6D14 = D8.D14φ: D14/C14C2 ⊆ Out D81124D8.6D14448,681
D8.7D14 = C2×D8.D7φ: D14/C14C2 ⊆ Out D8224D8.7D14448,682
D8.8D14 = C56.30C23φ: D14/C14C2 ⊆ Out D82244D8.8D14448,728
D8.9D14 = C56.31C23φ: D14/C14C2 ⊆ Out D82244-D8.9D14448,729
D8.10D14 = D8.10D14φ: trivial image2244-D8.10D14448,1224

׿
×
𝔽