Copied to
clipboard

G = D8⋊D14order 448 = 26·7

2nd semidirect product of D8 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D82D14, D162D7, C162D14, D14.6D8, C1124C22, Dic7.8D8, C56.14C23, D56.1C22, Dic284C22, C7⋊C8.2D4, (D7×D8)⋊4C2, C4.2(D4×D7), (C7×D16)⋊4C2, C7⋊D162C2, C7⋊C161C22, D8.D71C2, (C4×D7).7D4, C28.8(C2×D4), C2.17(D7×D8), D83D73C2, C16⋊D73C2, C112⋊C23C2, C72(C16⋊C22), C14.33(C2×D8), (C7×D8)⋊6C22, (C8×D7).3C22, C8.20(C22×D7), SmallGroup(448,445)

Series: Derived Chief Lower central Upper central

C1C56 — D8⋊D14
C1C7C14C28C56C8×D7D7×D8 — D8⋊D14
C7C14C28C56 — D8⋊D14
C1C2C4C8D16

Generators and relations for D8⋊D14
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=cac-1=dad=a-1, cbc-1=a5b, dbd=ab, dcd=c-1 >

Subgroups: 688 in 90 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C7, C8, C8, C2×C4, D4, Q8, C23, D7, C14, C14, C16, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, Dic7, Dic7, C28, D14, D14, C2×C14, M5(2), D16, D16, SD32, C2×D8, C4○D8, C7⋊C8, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C7×D4, C22×D7, C16⋊C22, C7⋊C16, C112, C8×D7, D56, Dic28, D4⋊D7, D4.D7, C7×D8, D4×D7, D42D7, C16⋊D7, C112⋊C2, C7⋊D16, D8.D7, C7×D16, D7×D8, D83D7, D8⋊D14
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, C2×D8, C22×D7, C16⋊C22, D4×D7, D7×D8, D8⋊D14

Smallest permutation representation of D8⋊D14
On 112 points
Generators in S112
(1 39 16 46 14 53 23 32)(2 33 24 54 8 47 17 40)(3 41 18 48 9 55 25 34)(4 35 26 56 10 49 19 42)(5 29 20 50 11 43 27 36)(6 37 28 44 12 51 21 30)(7 31 22 52 13 45 15 38)(57 80 85 104 111 92 73 64)(58 65 74 93 112 105 86 81)(59 82 87 106 99 94 75 66)(60 67 76 95 100 107 88 83)(61 84 89 108 101 96 77 68)(62 69 78 97 102 109 90 71)(63 72 91 110 103 98 79 70)
(1 75)(2 83)(3 77)(4 71)(5 79)(6 73)(7 81)(8 95)(9 89)(10 97)(11 91)(12 85)(13 93)(14 87)(15 65)(16 99)(17 67)(18 101)(19 69)(20 103)(21 57)(22 105)(23 59)(24 107)(25 61)(26 109)(27 63)(28 111)(29 98)(30 64)(31 86)(32 66)(33 88)(34 68)(35 90)(36 70)(37 92)(38 58)(39 94)(40 60)(41 96)(42 62)(43 72)(44 104)(45 74)(46 106)(47 76)(48 108)(49 78)(50 110)(51 80)(52 112)(53 82)(54 100)(55 84)(56 102)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 17)(18 28)(19 27)(20 26)(21 25)(22 24)(29 56)(30 55)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)(57 68)(58 67)(59 66)(60 65)(61 64)(62 63)(69 70)(71 72)(73 84)(74 83)(75 82)(76 81)(77 80)(78 79)(85 96)(86 95)(87 94)(88 93)(89 92)(90 91)(97 98)(99 106)(100 105)(101 104)(102 103)(107 112)(108 111)(109 110)

G:=sub<Sym(112)| (1,39,16,46,14,53,23,32)(2,33,24,54,8,47,17,40)(3,41,18,48,9,55,25,34)(4,35,26,56,10,49,19,42)(5,29,20,50,11,43,27,36)(6,37,28,44,12,51,21,30)(7,31,22,52,13,45,15,38)(57,80,85,104,111,92,73,64)(58,65,74,93,112,105,86,81)(59,82,87,106,99,94,75,66)(60,67,76,95,100,107,88,83)(61,84,89,108,101,96,77,68)(62,69,78,97,102,109,90,71)(63,72,91,110,103,98,79,70), (1,75)(2,83)(3,77)(4,71)(5,79)(6,73)(7,81)(8,95)(9,89)(10,97)(11,91)(12,85)(13,93)(14,87)(15,65)(16,99)(17,67)(18,101)(19,69)(20,103)(21,57)(22,105)(23,59)(24,107)(25,61)(26,109)(27,63)(28,111)(29,98)(30,64)(31,86)(32,66)(33,88)(34,68)(35,90)(36,70)(37,92)(38,58)(39,94)(40,60)(41,96)(42,62)(43,72)(44,104)(45,74)(46,106)(47,76)(48,108)(49,78)(50,110)(51,80)(52,112)(53,82)(54,100)(55,84)(56,102), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,17)(18,28)(19,27)(20,26)(21,25)(22,24)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,72)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(97,98)(99,106)(100,105)(101,104)(102,103)(107,112)(108,111)(109,110)>;

G:=Group( (1,39,16,46,14,53,23,32)(2,33,24,54,8,47,17,40)(3,41,18,48,9,55,25,34)(4,35,26,56,10,49,19,42)(5,29,20,50,11,43,27,36)(6,37,28,44,12,51,21,30)(7,31,22,52,13,45,15,38)(57,80,85,104,111,92,73,64)(58,65,74,93,112,105,86,81)(59,82,87,106,99,94,75,66)(60,67,76,95,100,107,88,83)(61,84,89,108,101,96,77,68)(62,69,78,97,102,109,90,71)(63,72,91,110,103,98,79,70), (1,75)(2,83)(3,77)(4,71)(5,79)(6,73)(7,81)(8,95)(9,89)(10,97)(11,91)(12,85)(13,93)(14,87)(15,65)(16,99)(17,67)(18,101)(19,69)(20,103)(21,57)(22,105)(23,59)(24,107)(25,61)(26,109)(27,63)(28,111)(29,98)(30,64)(31,86)(32,66)(33,88)(34,68)(35,90)(36,70)(37,92)(38,58)(39,94)(40,60)(41,96)(42,62)(43,72)(44,104)(45,74)(46,106)(47,76)(48,108)(49,78)(50,110)(51,80)(52,112)(53,82)(54,100)(55,84)(56,102), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,17)(18,28)(19,27)(20,26)(21,25)(22,24)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(69,70)(71,72)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(97,98)(99,106)(100,105)(101,104)(102,103)(107,112)(108,111)(109,110) );

G=PermutationGroup([[(1,39,16,46,14,53,23,32),(2,33,24,54,8,47,17,40),(3,41,18,48,9,55,25,34),(4,35,26,56,10,49,19,42),(5,29,20,50,11,43,27,36),(6,37,28,44,12,51,21,30),(7,31,22,52,13,45,15,38),(57,80,85,104,111,92,73,64),(58,65,74,93,112,105,86,81),(59,82,87,106,99,94,75,66),(60,67,76,95,100,107,88,83),(61,84,89,108,101,96,77,68),(62,69,78,97,102,109,90,71),(63,72,91,110,103,98,79,70)], [(1,75),(2,83),(3,77),(4,71),(5,79),(6,73),(7,81),(8,95),(9,89),(10,97),(11,91),(12,85),(13,93),(14,87),(15,65),(16,99),(17,67),(18,101),(19,69),(20,103),(21,57),(22,105),(23,59),(24,107),(25,61),(26,109),(27,63),(28,111),(29,98),(30,64),(31,86),(32,66),(33,88),(34,68),(35,90),(36,70),(37,92),(38,58),(39,94),(40,60),(41,96),(42,62),(43,72),(44,104),(45,74),(46,106),(47,76),(48,108),(49,78),(50,110),(51,80),(52,112),(53,82),(54,100),(55,84),(56,102)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,17),(18,28),(19,27),(20,26),(21,25),(22,24),(29,56),(30,55),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43),(57,68),(58,67),(59,66),(60,65),(61,64),(62,63),(69,70),(71,72),(73,84),(74,83),(75,82),(76,81),(77,80),(78,79),(85,96),(86,95),(87,94),(88,93),(89,92),(90,91),(97,98),(99,106),(100,105),(101,104),(102,103),(107,112),(108,111),(109,110)]])

49 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B8C14A14B14C14D···14I16A16B16C16D28A28B28C56A···56F112A···112L
order12222244477788814141414···141616161628282856···56112···112
size1188145621456222222822216···164428284444···44···4

49 irreducible representations

dim1111111122222224444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D7D8D8D14D14C16⋊C22D4×D7D7×D8D8⋊D14
kernelD8⋊D14C16⋊D7C112⋊C2C7⋊D16D8.D7C7×D16D7×D8D83D7C7⋊C8C4×D7D16Dic7D14C16D8C7C4C2C1
# reps11111111113223623612

Matrix representation of D8⋊D14 in GL8(𝔽113)

0011210000
341111790000
274411200000
264411200000
00005110900
000085000
000089628282
000081253182
,
31082310000
376251760000
4685100000
77882820000
000014105105
00001251011
000073519393
000046881981
,
548850590000
809104240000
88025250000
888825250000
00005110900
0000856200
0000111470112
000051971120
,
548859500000
809241040000
88025250000
798825250000
00005110900
0000856200
0000314601
0000469710

G:=sub<GL(8,GF(113))| [0,34,27,26,0,0,0,0,0,1,44,44,0,0,0,0,112,111,112,112,0,0,0,0,1,79,0,0,0,0,0,0,0,0,0,0,51,85,89,81,0,0,0,0,109,0,62,25,0,0,0,0,0,0,82,31,0,0,0,0,0,0,82,82],[31,37,46,77,0,0,0,0,0,62,8,8,0,0,0,0,82,51,51,82,0,0,0,0,31,76,0,82,0,0,0,0,0,0,0,0,1,12,73,46,0,0,0,0,4,51,51,88,0,0,0,0,105,0,93,19,0,0,0,0,105,11,93,81],[54,80,88,88,0,0,0,0,88,9,0,88,0,0,0,0,50,104,25,25,0,0,0,0,59,24,25,25,0,0,0,0,0,0,0,0,51,85,111,51,0,0,0,0,109,62,47,97,0,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0],[54,80,88,79,0,0,0,0,88,9,0,88,0,0,0,0,59,24,25,25,0,0,0,0,50,104,25,25,0,0,0,0,0,0,0,0,51,85,31,46,0,0,0,0,109,62,46,97,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

D8⋊D14 in GAP, Magma, Sage, TeX

D_8\rtimes D_{14}
% in TeX

G:=Group("D8:D14");
// GroupNames label

G:=SmallGroup(448,445);
// by ID

G=gap.SmallGroup(448,445);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,135,346,185,192,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^5*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽