Copied to
clipboard

G = D7×SD32order 448 = 26·7

Direct product of D7 and SD32

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7×SD32, C165D14, Q161D14, D8.2D14, C1125C22, D14.13D8, Dic7.4D8, C56.16C23, D56.2C22, Dic285C22, (D7×D8).C2, C7⋊C8.13D4, C4.4(D4×D7), C72(C2×SD32), (D7×C16)⋊4C2, C7⋊C166C22, D8.D73C2, (D7×Q16)⋊3C2, C2.19(D7×D8), C112⋊C25C2, (C7×SD32)⋊3C2, (C4×D7).20D4, C28.10(C2×D4), C14.35(C2×D8), C7⋊SD321C2, (C7×Q16)⋊4C22, (C7×D8).2C22, C8.22(C22×D7), (C8×D7).11C22, SmallGroup(448,447)

Series: Derived Chief Lower central Upper central

C1C56 — D7×SD32
C1C7C14C28C56C8×D7D7×D8 — D7×SD32
C7C14C28C56 — D7×SD32
C1C2C4C8SD32

Generators and relations for D7×SD32
 G = < a,b,c,d | a7=b2=c16=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c7 >

Subgroups: 672 in 90 conjugacy classes, 33 normal (31 characteristic)
C1, C2, C2, C4, C4, C22, C7, C8, C8, C2×C4, D4, Q8, C23, D7, D7, C14, C14, C16, C16, C2×C8, D8, D8, Q16, Q16, C2×D4, C2×Q8, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C16, SD32, SD32, C2×D8, C2×Q16, C7⋊C8, C56, Dic14, C4×D7, C4×D7, D28, C7⋊D4, C7×D4, C7×Q8, C22×D7, C2×SD32, C7⋊C16, C112, C8×D7, D56, Dic28, D4⋊D7, C7⋊Q16, C7×D8, C7×Q16, D4×D7, Q8×D7, D7×C16, C112⋊C2, D8.D7, C7⋊SD32, C7×SD32, D7×D8, D7×Q16, D7×SD32
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, SD32, C2×D8, C22×D7, C2×SD32, D4×D7, D7×D8, D7×SD32

Smallest permutation representation of D7×SD32
On 112 points
Generators in S112
(1 71 97 50 42 90 25)(2 72 98 51 43 91 26)(3 73 99 52 44 92 27)(4 74 100 53 45 93 28)(5 75 101 54 46 94 29)(6 76 102 55 47 95 30)(7 77 103 56 48 96 31)(8 78 104 57 33 81 32)(9 79 105 58 34 82 17)(10 80 106 59 35 83 18)(11 65 107 60 36 84 19)(12 66 108 61 37 85 20)(13 67 109 62 38 86 21)(14 68 110 63 39 87 22)(15 69 111 64 40 88 23)(16 70 112 49 41 89 24)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 31)(8 32)(9 17)(10 18)(11 19)(12 20)(13 21)(14 22)(15 23)(16 24)(33 104)(34 105)(35 106)(36 107)(37 108)(38 109)(39 110)(40 111)(41 112)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 103)(65 84)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(77 96)(78 81)(79 82)(80 83)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(18 24)(19 31)(20 22)(21 29)(23 27)(26 32)(28 30)(33 43)(35 41)(36 48)(37 39)(38 46)(40 44)(45 47)(49 59)(51 57)(52 64)(53 55)(54 62)(56 60)(61 63)(65 77)(66 68)(67 75)(69 73)(70 80)(72 78)(74 76)(81 91)(83 89)(84 96)(85 87)(86 94)(88 92)(93 95)(98 104)(99 111)(100 102)(101 109)(103 107)(106 112)(108 110)

G:=sub<Sym(112)| (1,71,97,50,42,90,25)(2,72,98,51,43,91,26)(3,73,99,52,44,92,27)(4,74,100,53,45,93,28)(5,75,101,54,46,94,29)(6,76,102,55,47,95,30)(7,77,103,56,48,96,31)(8,78,104,57,33,81,32)(9,79,105,58,34,82,17)(10,80,106,59,35,83,18)(11,65,107,60,36,84,19)(12,66,108,61,37,85,20)(13,67,109,62,38,86,21)(14,68,110,63,39,87,22)(15,69,111,64,40,88,23)(16,70,112,49,41,89,24), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,81)(79,82)(80,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(18,24)(19,31)(20,22)(21,29)(23,27)(26,32)(28,30)(33,43)(35,41)(36,48)(37,39)(38,46)(40,44)(45,47)(49,59)(51,57)(52,64)(53,55)(54,62)(56,60)(61,63)(65,77)(66,68)(67,75)(69,73)(70,80)(72,78)(74,76)(81,91)(83,89)(84,96)(85,87)(86,94)(88,92)(93,95)(98,104)(99,111)(100,102)(101,109)(103,107)(106,112)(108,110)>;

G:=Group( (1,71,97,50,42,90,25)(2,72,98,51,43,91,26)(3,73,99,52,44,92,27)(4,74,100,53,45,93,28)(5,75,101,54,46,94,29)(6,76,102,55,47,95,30)(7,77,103,56,48,96,31)(8,78,104,57,33,81,32)(9,79,105,58,34,82,17)(10,80,106,59,35,83,18)(11,65,107,60,36,84,19)(12,66,108,61,37,85,20)(13,67,109,62,38,86,21)(14,68,110,63,39,87,22)(15,69,111,64,40,88,23)(16,70,112,49,41,89,24), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,17)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,81)(79,82)(80,83), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(18,24)(19,31)(20,22)(21,29)(23,27)(26,32)(28,30)(33,43)(35,41)(36,48)(37,39)(38,46)(40,44)(45,47)(49,59)(51,57)(52,64)(53,55)(54,62)(56,60)(61,63)(65,77)(66,68)(67,75)(69,73)(70,80)(72,78)(74,76)(81,91)(83,89)(84,96)(85,87)(86,94)(88,92)(93,95)(98,104)(99,111)(100,102)(101,109)(103,107)(106,112)(108,110) );

G=PermutationGroup([[(1,71,97,50,42,90,25),(2,72,98,51,43,91,26),(3,73,99,52,44,92,27),(4,74,100,53,45,93,28),(5,75,101,54,46,94,29),(6,76,102,55,47,95,30),(7,77,103,56,48,96,31),(8,78,104,57,33,81,32),(9,79,105,58,34,82,17),(10,80,106,59,35,83,18),(11,65,107,60,36,84,19),(12,66,108,61,37,85,20),(13,67,109,62,38,86,21),(14,68,110,63,39,87,22),(15,69,111,64,40,88,23),(16,70,112,49,41,89,24)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,31),(8,32),(9,17),(10,18),(11,19),(12,20),(13,21),(14,22),(15,23),(16,24),(33,104),(34,105),(35,106),(36,107),(37,108),(38,109),(39,110),(40,111),(41,112),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,103),(65,84),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(77,96),(78,81),(79,82),(80,83)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(18,24),(19,31),(20,22),(21,29),(23,27),(26,32),(28,30),(33,43),(35,41),(36,48),(37,39),(38,46),(40,44),(45,47),(49,59),(51,57),(52,64),(53,55),(54,62),(56,60),(61,63),(65,77),(66,68),(67,75),(69,73),(70,80),(72,78),(74,76),(81,91),(83,89),(84,96),(85,87),(86,94),(88,92),(93,95),(98,104),(99,111),(100,102),(101,109),(103,107),(106,112),(108,110)]])

55 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D7A7B7C8A8B8C8D14A14B14C14D14E14F16A16B16C16D16E16F16G16H28A28B28C28D28E28F56A···56F112A···112L
order12222244447778888141414141414161616161616161628282828282856···56112···112
size11778562814562222214142221616162222141414144441616164···44···4

55 irreducible representations

dim11111111222222222444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D7D8D8D14D14D14SD32D4×D7D7×D8D7×SD32
kernelD7×SD32D7×C16C112⋊C2D8.D7C7⋊SD32C7×SD32D7×D8D7×Q16C7⋊C8C4×D7SD32Dic7D14C16D8Q16D7C4C2C1
# reps111111111132233383612

Matrix representation of D7×SD32 in GL4(𝔽113) generated by

1000
0100
00881
00111104
,
1000
0100
003479
002479
,
1044400
251600
001120
000112
,
1100
011200
0010
0001
G:=sub<GL(4,GF(113))| [1,0,0,0,0,1,0,0,0,0,88,111,0,0,1,104],[1,0,0,0,0,1,0,0,0,0,34,24,0,0,79,79],[104,25,0,0,44,16,0,0,0,0,112,0,0,0,0,112],[1,0,0,0,1,112,0,0,0,0,1,0,0,0,0,1] >;

D7×SD32 in GAP, Magma, Sage, TeX

D_7\times {\rm SD}_{32}
% in TeX

G:=Group("D7xSD32");
// GroupNames label

G:=SmallGroup(448,447);
// by ID

G=gap.SmallGroup(448,447);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,135,184,346,185,192,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^16=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^7>;
// generators/relations

׿
×
𝔽